An Introduction to Writing a XORP Process

Version 1.6

XORP, Inc.
http://www.xorp.org/
feedback@xorp.org

January 7, 2009

Contents

Introduction
Overview
The XRL Interface of static_routes

Using thestatic _routes XRL Interface
4.1 Generating stub code for the caller
4.2 Generating stub code for the target

The Main Loop

Calling XRLs on the RIB
6.1 Returning valuesin XRLs.

Compiling the Source Code
The XLOG Logging Facility
Thertrmgr Template Files

Modification History

16

20
26

27

28

32

33

1 Introduction

This document is intented for a developer who wishes to var¥®ORP process, but doesn’t know where to
start. We’'ll walk through a simple XORP process, discuss$iog to define and use XRL interfaces, and
how the bits fit together.

This is a first pass at such a document. We're bound to havesthtbings that are not obvious when
you're starting out. Please provide us feedback as to hovhrhalp this document is; what really helped,
what's missing, and what isn’t explained properly.

We'll assume that you have copies of four other XORP desiguoh@nts:

e XORP Design Overview[1]
e XORP Libxorp Library Overview[3]
e XORP Inter-Process Communication Library Overview[2]

e XRL Interfaces: Specifications and Tools[4]

These are available from the XORP web server. You shouldaiigthave read these through quickly
S0 you're aware what additional information is availabléobe reading this document further. It's recom-
mended to read them in the order above.

We will assume you are familiar with what an XRL request ig t¢iverall structure of the processes on
a XORP router, and with C++.

2 Overview

In this document we’ll work through by example the structof@ simple XORP process. We've chosen the
staticroutesprocess as an example. At the time of writing, this docum®int sync with the source code
for staticroutes, but this is not guaranteed to always be the case.

static_routesis a very simple XORP process. To a first approximation, iergzs XRL configuration
requests from th&orp_rtrmgr to set up static routing entries, stores the entries, andragritates them to
the RIB using XRLs.

This makes it a good example, because it exports an XRL atderfo other processes (typically the
xorp_rtrmgr) and calls XRLs on the XRL interface of another XORBgass (the RIB). But it doesn’t do all
that much else, so there are few files and the code is quitabtad

The source code for thetatic_routesprocess is found in theorp/static _routes subdirectory of the
XORP source tree.

We’'ll walk through the main pieces of statioutes in the following order:

e The XRL interface of staticoutes.
e Implementing the XRL interface of statioutes.

e The main loop of static routes.

Calling XRLs on the RIB.

Compiling the source code

3 The XRL Interface of static routes

XRL interfaces are defined by.&if file (pronouncedlot-ziff). xif stands for XRL InterFace. Alkif
files reside inkorp/xrl/interfaces

The relevant file for us igorp/xrl/interfaces/static _routes.xif . The first part of this file is
shown in Listing 1.

Listing 1: The start okorp/xrl/interfaces/static _routes.xif
| *
* Static Routes XRL interface.
*/

interface static_routes/0.1 {

| **

* Enable/disable/start/stop StaticRoutes.

*

* @param enable if true, then enable StaticRoutes, otherwise
* disable it.

* |

enable_static_routes ? enable: bool
start_static_routes

stop_static_routes

| **
* Add/replace/delete a static route.
*
* @param unicast if true, then the route would be used for unica st
* routing.
* @param multicast if true, then the route would be used in the
* MRIB (Multicast Routing Information Base) for multicast pu rpose
* (e.g., computing the Reverse-Path Forwarding information).
* @param network the network address prefix this route applie s to.
* @param nexthop the address of the next-hop router for this ro ute.

*

@param metric the metric distance for this route.

* |

add_route4 ? unicast: bool & multicast: bool & network:ipv4net \
& nexthop:ipv4 & metric:u32

add_route6 ? unicast: bool & multicast: bool & network:ipvénet \

& nexthop:ipv6 & metric:u32

The filestatic _routes.xif defines all the XRLs that are part of thatic _routes XRL interface.
These are XRLs that other processes can call ostHie routesprocess.

The format of the file is basically the keywoinderface followed by the name and version of this
particular interface, followed by a list of XRLs. In this eathe name of the interface sgatic _routes
but this does not have to be the same as the name of the proEkessversion number i8.1 . Version

numbers are generally increased when a change is made ti@thsckwards compatible, but the precise
value has no important meaning.

The list of XRLs is demarked by bracés... }, and one XRL is given per line. Blank lines and
comments are allowed, and a backslash before the newlinbecased to split a long XRL over multiple
lines to aid readability.

Thus the first XRL in this file is:
static _routes/0.1/enable _static _routes?enable:bool

When this XRL is actually called, it would look like:
finder://static _routes/static _routes/0.1/enable _static _routes?enable:bool=true

Thefinder part indicates that the XRL is an abstract one - we don't yetkwhat the transport param-
eters are. The firstatic _routes indicates the name of the target process, and the satatitd _routes
is the name of the interface, taken from the XIF file. A process support more than one interface, and an
interface definition can be used by more than one processehe duplication in a process as simple as
static routes

4 Using thestatic _routes XRL Interface

Now we have seen how the XRLs comprising the statigtes interface are defined, we shall examine how
processes actually use them. For any particular intertheeg are two types of user:

e The process that calls the XRLs and gets back responsesisdaibed the XRLcaller.

e The process on which the XRL is called, and which generatgsoreses. This is called the XRL
target

XORP provides scripts which can generate C++ code to makenlifch easier for both these parties.

4.1 Generating stub code for the caller

If we examine the fileMakefile.am (the automake Makefile) irorp/xrl/interfaces , we find the
fragment in Listing 2.

Listing 2: Fragment fronxorp/xrl/interfaces/Makefile.am

HHEHHHH R HHHH TR
Client Interface related
HHBHHHH R R R R HHHH AR

BGP MIB traps
noinst_LTLIBRARIES = libbgpmibtrapsxif.la
libbgpmibtrapsxif la_ SOURCES = bgp_mib_traps_xif.hh bg p_mib_traps_xif.cc

StaticRoutes Interface
noinst LTLIBRARIES += libstaticroutesxif.la
libstaticroutesxif la_ SOURCES = static_routes_xif.hh s tatic_routes_xif.cc

HHEHHHH R HHHH T
Static Pattern Rules
HHBHHHH R R R R HHHH AR

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
CLNTGEN_PY=$(SCRIPT_DIR)/cInt-gen

@PYTHON_BUILD@%_xif.cc %_xif.hh $(srcdir)/%_xif.nh $(s rcdir)/%_xif.cc: \
$(sredir)/%.xif $(CLNTGEN_PY)
@PYTHON_BUILD@ $(PYTHON) $(CLNTGEN_PY) $<

This adddibstaticroutesxif.la to the list of libraries that should be built, and indicateattthe
source files for this library argtatic _routes xif.hh andstatic _routes xif.cc

The last part is pretty cryptic, but basically is a generle that says that files ending witkif.cc and
xif.nh will be generated from files ending witkif using the python script callegdnt-gen

So what actually happens here is that thedilgic _routes.xif is processed byint-gen to pro-
ducestatic _routes xif.hh andstatic _routes xif.cc ,which are then compiled and linked into the
library libstaticroutesxif.la . Any process that wants to call tistatic_routesinterface can link with
this library.

So what functionality does this library provide? Listingt®ws a fragment from the machine-generated
file static _routes xif.hh . Between themstatic _routes xif.hh andstatic _routes _xif.cc

define the machine-generated clasiStaticRoutesVOp1Client and its complete implementation.
Listing 3: Fragment fronxorp/xrl/interfaces/static routes xif.hh
cl ass XrIStaticRoutesVOpl1Client {
public:
XrIStaticRoutesVOp1Client(XrISender * s) : _sender(s) {}

vi rtual ~“XrlStaticRoutesVOp1Client() {}

typedef XorpCallbackl< void, const XrlError&>::RefPtr AddRoute4CB;

[**

* Send Xrl intended to:

*

* Add/replace/delete a static route.

* @param dst_xrl_target_name the Xrl target name of the desti nation.
*

* @param unicast if true, then the route would be used for unica st
* routing.

*

* @param multicast if true, then the route would be used in the M RIB
* (Multicast Routing Information Base) for multicast purpos e (e.g.,
* computing the Reverse-Path Forwarding information).

*

* @param network the network address prefix this route applie s to.
*

* @param nexthop the address of the next-hop router for this ro ute.

*

* @param metric the metric distance for this route.

* [

bool send_add_route4(
const char= dst_xrl_target_name,
const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const AddRoute4CB& cb

);

The constructor foxrlStaticRoutesVOp1Client takes a pointer to axrlSender as its parameter.
Typically this is actually arxrlRouter - we’ll come to this in more detail later.

Then for every XRL defined istatic _routes.xif there is a method to be called on an instance of
XrlStaticRoutesVOp1Client . The example we’'ll look at here &nd _add _route4() , although there
are many more methods definecstatic ~ _routes.xif

If you compare the methosknd _add _route4() in Listing 3 with the XRLadd _route4 in Listing 1,
it should be pretty clear where this comes from. Basicallyemyou call
XrlStaticRoutesVOp1Client::send .add _route4 with all the parameterauficast , nexthop , etc).
set appropriately, the XRhdd _route4 will be called. You don’t need to concern yourself with hove th
parameters are marshalled into the right syntax for the XiRhpw the XRL is actually transmitted, or even
how the target process is discovered. But you do need toesatrjet _name parameter to the same thing
that thestatic _routes process sets it to, otherwise the XRhderwon't be able to route your XRL to its
destination. Often the target name will be the same as the mdithe process - in this cas@tic routes
but if there are multiple instances of the interface therilynaed to figure out which target name to use.

You'll also notice that some of the parameters for XRL fuocs are not native C++ types. In this case,
network is of typelPv4Net andnexthop is of typelPv4 . Classes instantiating the these additional types
are found inlibxorp and are used throughout XORP.

The final parameter isonst AddRoute4CB& cb
Earlier in the Listing we can see that this is defined as:
typedef XorpCallbackl<void, const XrlError&>::RefPtr Ad dRoute4CB,;

This definesAddRoute4CB to be acallback which returns typevoid with one parameter of typeonst
XrlError&

But what exactly is @allback ?

Well, what we want is to call theend _add route4() method to send an XRL request to 8tatic routes
process, and then to go off and do other things while we'rdimgaifor the response to come back. In
a multi-threaded architecture, this might be achieved binigesend _add _route4() block until the re-
sponse is ready, but XORP is deliberatelgt a multi-threaded architecture. Thus what happens is that
send _add _route4() will return immediately. It will return false if a local err@ccurs, but will normally
return true before the XRL has actually been sent. Some ttee the response will come back from the
static.routesprocess, and we need a way to direct the response to the lagistinstance that is expecting
it. This is achieved in XORP through the usecaflbacks

A callback is created using thmllback() function from libxorp. We'll discuss this in more detalil
when we look at how thetatic routesprocess sends changes to the RIB in Section 6. For now, itesiffd
say that a callback must be created and passedénih_add _route4() , and that this is how the response
from theadd _route4() = XRL is returned to the right place.

4.2 Generating stub code for the target

The other side to the XRL story is how the XRL target implersehe XRLs. To illustrate this, we will look

at how thestatic routesprocess implements the XRL interface definedtatic _routes.xif . A XORP
process can implement more than one interface. In fact mORKXprocesses implement a special-purpose
interface and also theommoninterface, which provides XRLs to query basic version aatlstinformation
about a target process.

To see what interfaces a particular target process suppertmust look in thexorp/xrl/targets
directory. Listing 4 shows the entire contentsstdtic _routes.tgt . This file defines that the XRL
target callecstatic _routes implements the two interfaceemmon/0.1 andstatic _routes/0.1

In the static_routesprocess, we’'d prefer not to have to write all the code to usital XRLs into C++,
and marshall the response back into an XRL response, sowgaise machine-generated C++ stubs to free
the programmer from having to do most of the tedious worktigs5 shows a number of fragments from
xorp/xrl/targets/Makefile.am related to thestatic _routes target.

In Listing 5, the first important point is thatatic _routes.tgt is added to the list ofgt _files
From eachtgt file, a.xrls file will be generated using the python scrigtgen according to the magic
at the bottom of the listing.

Inthe case oftatic _routes.tgt , the filestatic _routes.xrls will be generated. This file simply
contains a listing of all the fully expanded XRLs support@diiestatic _routes XRL target.

The next important point to note from Listing 5 is that we hapecified that we want to build a library
calledlibstaticroutesbase.la . This is going to be the library that ttstatic routesprocess links with
to get access to all the stub code to implement the targetptris interface.

Finally there’s the directive to builtbstaticroutesbase.la from the machine-generated source
files static _routes _base.hh andstatic _routes _base.cc , and that these files depend on the files
common.xif andstatic _routes.xif

So, what doegibstaticroutesbase.la actually provide? Listing 6 shows some extracts from
static _routes _base.hh . Basicallylibstaticroutesbase.la defines a class called
XrlStaticRoutesTargetBase which will be used to receive XRL requests.

The constructor foiXrIStaticRoutesTargetBase takes a single parameter which is typically the

XrIRouter for the process. AXrIRouter is an object that is bound to &ventLoopmnd which sends and
receives XRL requests. Each process has itsiBwantLoop In Section 5 we’ll look at what the EventLoop
does. In any event, once an instanc&d$taticRoutesTargetBase has been created with a pointer to
a workingXrlRouter , then the process is ready to receive XRL requests fastthie _routes interface.
But first we have to actually write some code.

If we look in at Listing 6, we see that the methetétic _routes _0_1_add_route4() has been de-
fined. However the method ispare virtual which means that it is defined here, but there is no implemen-
tation of this inXrlStaticRoutesTargetBase . So how do we actually make use of this?

The general idea is that the stub generation code knows tthaxsior this target interface, so it generates
all the code needed to check that incoming requests matctefieed syntax and handle errors if they
don't. But the stub generation code has no idea what thisfate actuallydoes We need to supply an
implemenation fostatic _routes _0_1_add_route4() that actually does what we want when this XRL
is called.

Listing 4. Contents okorp/xrl/targets/static _routes.tgt

#i ncl ude "common.xif"

#i ncl ude "finder_event_observer.xif"
#i ncl ude "policy_backend.xif"

#i ncl ude "static_routes.xif"

target static_routes implements common/0.1, \
finder_event_observer/0.1, \
policy backend/0.1, \
static_routes/0.1

Listing 5: Extracts fromxorp/xrl/targets/Makefile.am

HHHH AR R R R R A R HHAHHHAHH AR R
Xrl Target related
T T T R HHHHHHHE T

Add your target file here

tgt_files = bgp.tgt

tgt_files += static_routes.tgt

Automatically compute the list of the * xrls files
xrls_files = $(tgt_files:%.tgt=%.xrls)

Add your target's library here
noinst_LTLIBRARIES libbgpbase.la
noinst_LIBRARIES libbgpbase.a

noinst_LTLIBRARIES += libstaticroutesbase.la

StaticRoutes

libstaticrouteshase la_ SOURCES = static_routes_base.h h static_routes_base.cc

$(srcdir)/static_routes_base.hh $(srcdir)/static_rou tes_base.cc: \
$(INTERFACES_DIR)/common.xif \
$(INTERFACES_DIR)/finder_event_observer.xif \
$(INTERFACES_DIR)/policy_backend.xif \

$(INTERFACES_DIR)/static_routes.xif

T R HHHHHHHE T A
Implicit Rules and related
HHHHAHH R R R AR A R HHAHHHAHH AR

SCRIPT_DIR=$(top_srcdir)/xrl/scripts
TGTGEN_PY=$(SCRIPT_DIR)/tgt-gen

If this code is commented out, please upgrade to python2.0 or above.
@PYTHON_BUILD@#$(srcdir)/%_base.hh $(srcdir)/%_base.c Cc %_base.hh % base.cc

@PYTHON_BUILD@$(srcdir)/%.xrls: $(srcdir)/%.tgt $(TGT GEN_PY)
@PYTHON_BUILD@ $(PYTHON) $(TGTGEN_PY) -I$(INTERFACES_IR) $<

10

Listing 6: Extracts fromxorp/xrl/targets/static routes _base.hh

cl ass XrlStaticRoutesTargetBase {

public:
[**
* Constructor.

*

* @param cmds an XrlCmdMap that the commands associated with t he target
* should be added to. This is typically the XrlRouter
* associated with the target.
* [

XrIStaticRoutesTargetBase(XrICmdMap * cmds = 0);

pr ot ect ed:

| **
* Pure-virtual function that needs to be implemented to:
*
* Add/replace/delete a static route.
*
* @param unicast if true, then the route would be used for unica st
* routing.
*
* @param multicast if true, then the route would be used in the M RIB
* (Multicast Routing Information Base) for multicast purpos e (e.g.,
* computing the Reverse-Path Forwarding information).
*
* @param network the network address prefix this route applie s to.
*
* @param nexthop the address of the next-hop router for this ro ute.

*

* @param metric the metric distance for this route.
*/
vi rtual XrICmdError static_routes 0 1 add route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,

const uint32_t& metric) = O;

11

Listing 7: Extracts fromxorp/static _routes/xrl _static _routes _node.hh

cl ass XrlStaticRoutesNode : publ i ¢ StaticRoutesNode,
publ i ¢ XrIStdRouter,
publ i ¢ XriStaticRoutesTargetBase {

public:
XrIStaticRoutesNode(EventLoop& eventloop,

const string& class_name,
const string& finder_hostname,
uintl6 t finder_port,
const string& finder_target,
const string& fea target,
const string& rib_target);

pr ot ect ed:

1
/I XRL target methods
1

XrICmdError static_routes_0_1 add_route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,

const uint32_t& metric);

privat e:

XrIRibVOp1Client _xrl_rib_client;

So now we come at last to the implementation ofdteic routesprocess. This is in the
xorp/static _routes directory.

We have created a file calledl _static _routes _node.hh to define our class that actually imple-
ments the code to receive and process XRLs. An extract frasnishshown in Listing 7. We have
defined our own class callexrlStaticRoutesNode which is a child class oBtaticRoutesNode
XriStdRouter and XrlStaticRoutesTargetBase classes. We'll ignore th&taticRoutesNode
class in this explanation, because it's specific todtaic routesprocess, but the important thing is that
XrlStaticRoutesNode is a child of theXrlStaticRoutesTargetBase base class that was generated
by the stub compiler, and a child of txelStdRouter ~ base class.

The constructor for ouxrlStaticRoutesNode class takes a number of parameters which are specific
to this particular implementation, but it also takes a nundfg@arameters that are used in the constructor of
theXriStdRouter ~ base class.

12

We also see from Listing 7 that oMrIStaticRoutesNode class is going to implement the
static _routes _0_1_add_route4() method from the stub compiler which was a pure virtual metimod
the base class.

13

Listing 8: Extracts fromxorp/static _routes/xrl _static _routes _node.cc

#i ncl ude "static_routes_node.hh"
#i ncl ude "xrl_static_routes_node.hh"

XrIStaticRoutesNode::XrIStaticRoutesNode(EventLoop& eventloop,
const string& class_name,
const string& finder_hostname,
uintl6 t finder_port,
const string& finder_target,
const string& fea_target,
const string& rib_target)

. StaticRoutesNode(eventloop),
XrIStdRouter(eventloop, class_name.c_str(), finder_ho stname.c_str(),
finder_port),
XrIStaticRoutesTargetBase(&xrl_router()),

_xrl_rib_client(&xrl_router()),

XrlCmdError
XrlStaticRoutesNode::static_routes_ 0 1 _add_route4(
/I Input values,

const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric)
{
string error_msg;
i f (StaticRoutesNode::add_route4(unicast, multicast, net work, nexthop,
", "™, metric, error_msg)
I= XORP_OK) {
return XrlICmdError::COMMAND_FAILED(error_msg);
}
return XrlICmdError::OKAY();
}
In Listing 8, we see an extract frosorp/static _routes/xrl _static _routes _node.cc where
we have actually implemented thelStaticRoutesNode class.
The constructor foiXrIStaticRoutesNode passes a humber of arguments to ¥iStdRouter
base class, and then passes to the constructor fotribaticRoutesTargetBase base class a pointer

14

to this XrIStdRouter base class (the return result for methatl _router()). In addition, it initial-
izes a lot of its own state (not shown). Note that if we werelanpenting a module that does not re-

ceive any XRLsi(e., it won't use the equivalent ofriStaticRoutesTargetBase), then we must call
XrIStdRouter::finalize() afterXriStdRouter ~ has been created.
The complete implementation &fIStaticRoutesNode::static routes _0_1_add_routed() is

shown. In this case, most of the actual work is done elsewhetehe general idea is clear. This is where
we actually receive and process the incoming XRL request.

Once we have processed the request, we need to return freméiihod. If this XRL had actually taken
any return values, there would have been parameters tetdtie _routes _0_1_add_route4 method
that were notonst references, and we would simply have set the values of thesables before call-
ing return to pass the values back to the XRL caller. In the casstatic routeshowever, none of the
XRLs return any values other than success or failure. WarnretdCmdError::OKAY () if all is well,
or XrIiCmdError::COMMAND _FAILED(error _msg) if something went seriously wrong, passing back a
human-readable string for diagnostic purposes.

In general, if an error response needs to return machirdabda error information, it is often better to
returnXrlCmdError::OKAY() together with return parameters to indicate that an erroniwed and what
actually happened, becausecC®MMANBAILED is returned, the return parameter values are not passed up
to the caller application.

15

5 The Main Loop

So far we've looked at how to define an XRL interface, how to pibenthe C++ stubs for that interface, and
how to define the actual code that implements that interf&my we need to look at the main loop of a
XORP process to see how these pieces all come together.

In Listing 10 the main pieces abrp/static _routes/xorp _static _routes.cc are shown. These
comprise the entire initialization part and main loop of static routesprocess.

First come the #includes. Convention indicates that thedirthese §tatic _routes _module.h)is
a header file defining the module name and version - this irdtiam is used by later includes which will
complain if this information is not available. The contefistatic _routes _module.h is very simple. It
must defineXORP_MODULE_NAMEIXORP_MODULE_VERSION

Listing 9: Listing ofxorp/static _routes/static _routes _module.h

#i f ndef XORP_MODULE_NAME

#defi ne XORP_MODULE_NAME "STATIC_ROUTES"
#endi f

#i f ndef XORP_MODULE_VERSION

#defi ne XORP_MODULE_VERSION "0.1"

#endi f

Then we include the functionality frofibxorp that we’ll need:

e libxorp/xorp.h : generic headers that should always be included.

e libxorp/xlog.h : XORP logging functionality. The convention is to use XLOGeros to log
warnings and error messages, so we can redefine how loggimplEmented in future without re-
writing the code that uses logging. See Section 8 for mo@mdtion about the XLOG facility.

e libxorp/debug.h : XORP debugging functionality.

e libxorp/callback.hh . XORP callback templates, needed to pass a handle into &eewliing
code to be called later when an event occurs.

e libxorp/eventloop.hh : the main XORP eventloop.

e libxorp/exceptions.hh : standard exceptions for standard stuff - useful as a débggad.

Finally we include the definition of the class that implensaihiestatic _routes XRL interface target
class we just defined.

In the processemain() function, we intialize thexlog logging functionality. Then (not shown) we
handle command line arguments.

The main part of this process occurs within a singfatch ~ statement. Theatch part then handles
any of the xorp standard exceptions that might be throwrs tioit intended that any unhandled exceptions
actually get this far, but if they do, thexorp _catch _standard _exceptions() will ensure that appropri-
ate diagnostic information is available when the procegps&res. This is not required, but it is good coding
practice.

The actual main loop that does all the work istatic _routes _main() .

First, theEventLoop is created. Every XORP process should have preciselyeweatLoop . All
processing in a XORP process is event-driven from the examtl\WWhen the process is idle, it will be blocked

16

in EventLoop::run() . When an XRL request arrives, or an XRL response arrives tionex expires, or
activity occurs on a registered file handle, then an eventleamill be called from the eventloop.

Next we create airlStdRouter . This is the object that will be used to send and receive XRusf
this process. We pass it tli@entLoop object, information about the host and port where the XRLeind
is located, and the XRL target name of this process: in ttég'gatic _routes”

Then we create an instance of tkéStaticRoutesNode class we defined earlier to receive XRLs on
thestatic _routes XRL targetinterface. Inside this object there will be therespondingkriStdRouter
object for sending and receiving XRLs from this process. \A&spgoxriStaticRoutesNode the follow-
ing:

TheEventLoop object.

The XRL target name of this process: in this c&setic _routes”

Information about the host and port where the XRL finder igted.

Information about the names of other XRL targets we needraneonicate with: the Finder, the FEA,
and the RIB.

Before we proceed any further, we must give the XrlStdRotimeee to register our existence with the
Finder. Thus we callvait _until _xrl _router _is _ready()

17

Listing 10: Extracts fronxorp/static _routes/xorp _static _routes.cc

I
I
I

#i

#i
#i
#i
#i
#i
#i

4

XORP StaticRoutes module implementation.

ncl ude "static_routes_module.h"

ncl ude "libxorp/xorp.h"

ncl ude "libxorp/xlog.h"

ncl ude "libxorp/debug.h”

ncl ude "libxorp/callback.hh”
ncl ude "libxorp/eventloop.hh"
ncl ude "libxorp/exceptions.hh”

ncl ude "xrl_static_routes node.hh"

static void

static_routes_main(const string& finder_hostname, uintl6_t finder_port)
{

Il

/I Init stuff

/!

EventLoop eventloop;

Il

/I StaticRoutes node

/!

XrIStaticRoutesNode xrl_static_routes_node(

eventloop,
"static_routes",
finder_hostname,
finder_port,
"finder",
"fea”,
"rib");
wait_until_xrl_router_is_ready(eventloop,
xrl_static_routes_node.xrl_router());

/I Startup
xrl_static_routes_node.startup();

I

/I Main loop

I

whil e (! xrl_static_routes_node.is_done()) {
eventloop.run();

}

18

i nt
main(i nt argc, char =*argv[])
{
int ch;
string::size_type idx;
const char =*argv0 = argv|[0];
string finder_hostname = FinderConstants::FINDER_DEFAU LT _HOST().str();
uintl6_t finder_port = FinderConstants::FINDER_DEFAULT _PORT();

1

/I Initialize and start xlog

1

xlog_init(argv[0], NULL);

xlog_set_verbose(XLOG_VERBOSE_LOW); /I Least verbose messages
/I XXX: verbosity of the error messages temporary increased

xlog_level_set verbose(XLOG_LEVEL ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();

xlog_start();

1
/I Run everything
1
try {
static_routes_main(finder_hostname, finder_port);
} catch(...) {
xorp_catch_standard_exceptions();
}

1

/I Gracefully stop and exit xlog
1

xlog_stop();

xlog_exit();

exit (0);

Finally we're ready to go. We set our internal state as reag,enter a tight loop that we will only exit
when it is time to terminate this process. At the core of thapl we callEventLoop::run() repeatedly.
run() will block when there are no events to process. When an eseaady to process, the relevant event
handler will be called, either directly viaallback or indirectly through one of the XRL stub handler
methods we defined earlier. Thus if another process calls the
finder://static _routes/static _routes/0.1/add _route4 XRL, the first we’ll know about it is
whenXrIStaticRoutesNode::static routes _0_1_add_route4() is executed.

19

6 Calling XRLs on the RIB

So far we have seen how we define an XRL interface, how we ingad¢the target side of such an interface,
and how the main loop of a XORP process is structured. In tke oéstatic routes we can now receive
XRLs informing us of routes. Thetatic routesprocess will do some checks and internal processing on
these routes (such as checking that they go out over a neimiface that is currently up). Finally it
will communicate the remaining routes to the RIB processuf® by the forwarding plane. We will now
examine how we send these routes to the RIB.

If we look in xorp/xrl/interfaces we find the filerib.xif which defines the XRLs available on
therib interface. Listing 11 shows some extracts from this file. Aswe been following through the
add _route4 XRL, we'll again look at that here. We'll also look at theokup _route _by_dest4 XRL
because this is an example of an XRL that returns some détaugh this particular XRL is not actually
used by thestatic_routesprocess. It is also worth noting in passing that the RIB negua routing protocol
(such asstatic.routeg to calladd _igp _table4 before sending routes to the RIB, or the RIB will not know
what to do with the routes.

As we saw with thestatic _routes.xif file, the rib.xif file is processed by a python script to
produce the filesib xif.hh andrib xif.cc in thexorp/xrl/interfaces directory which are then
compiled and linked to produce tlibribxif.la library. This library provides a class definition which
does all the work of marshalling C++ arguments into XRLsdaeg the XRL to the RIB process, receiving
the response, and calling the relevant callback in thercattecess with the response data.

Listing 12 shows some extracts fraib _xif.hh so we can see what the C++ interface to this library
looks like. The library implements a class callgdRibVOpi1Client . To use this code, we must first
create an instance of this class, calling the constructdsapplying a pointer to akriSender . Typically
such an XrlSender is an instance of&fRouter object.

In Listing 7 we can see that our implementation of clgdStaticRoutesNode actually defined an
instance oXrlRibVOp1Client called xrl _rib _client asa member variable, so this object is created
automatically when our main loop creates _static _routes _node in Listing 10. In Listing 8 we can
see that we passed _router into the constructor forxrl _rib _client

So, once everything else has been initialized, we’'ll haveess toxrl _rib _client from within
xrl _static _routes _node. Now, how do we make use of this generated code? The answenpses
to send a route to the RIB we simply cakrl _rib _client.send _add_route4() with the appropriate
parameters, and the generated library code will do the Vésican see this in Listing 13, where this code is
actually used.

The only real complication here is related to how we get tlepaoase back from the XRL. Recall
that xrl _rib _client.send _add_route4() will return immediately with a local success or failure re-
sponse, before the XRL has actually been transmitted to tBe Fhus we need to passaallbackin to
send _add _route4() . This callback will wrap up enough state so that when theaesp finally returns to
the XrIRouter in thestatic.routesprocess, it will know which method to call on which object hiivhich
parameters so as to send the response to the right place.

We can see iXrIRibvVOp1Client (Listing 7) that the type of the callback is:

XorpCallbackl<void, const XrlError&>::RefPtr

This defines a callback function that retustéd and which takes one argument of tyqaast XrlError&

If we look in Listing 13 we seen that the methrdStaticRoutesNode::send rib _route _change _ch()
fits exactly these criteria. This is the method we are goingstto receive the response from our XRL re-
quest.

20

Listing 11: Extracts fromxorp/xrl/interfaces/rib.xif

interface rib/0.1 {

x Add/delete an IGP or EGP table.

* @param protocol the name of the protocol.

* @param target_class the target class of the protocol.

* @param target_instance the target instance of the protocol
* @param unicast true if the table is for the unicast RIB.

* @param multicast true if the table is for the multicast RIB.
* |

add_igp_table4 ? protocol:txt
& target classitxt & target_instance:txt\
& unicast: bool & multicast: bool

| **

* Add/replace/delete a route.

*

* @param protocol the name of the protocol this route comes fro

* @param unicast true if the route is for the unicast RIB.

* @param multicast true if the route is for the multicast RIB.

* @param network the network address prefix of the route.

* @param nexthop the address of the next-hop router toward the

* destination.

* @param metric the routing metric.

* @param policytags a set of policy tags used for redistributi

* |

add_route4 ? protocol:itxt & unicast: bool & multicast:
& network:iipv4dnet & nexthop:ipv4 & metric:u32
& policytags:list

replace_route4 ? protocol:txt & unicast: bool & multicast:
& network:ipvdnet & nexthop:ipv4 & metric:u32
& policytags:list

delete_route4 ? protocol:itxt & unicast: bool & multicast:
& network:ipv4net

[**

* Lookup nexthop.

*

* @param addr address to lookup.

* @param unicast look in unicast RIB.

* @param multicast look in multicast RIB.

* @param nexthop contains the resolved nexthop if successful

* |[Pv4::ZERO otherwise. It is an error for the unicast and mult

* fields to both be true or both false.

* |

lookup_route_by dest4 ? addr:iipv4 & unicast: bool & multicast:

-> nexthop:ipv4

m.
on.
bool \
bool \
bool \
icast
bool \

21

Listing 12: Extracts fronmxorp/xrl/interfaces/rib xif.hh

cl ass XrlIRibVOpi1Client {
public:
XrIRibVOp1Client(XrISender * 38) : _sender(s) {}

typedef XorpCallbackl< void, const XrlError&>::RefPtr AddRoute4CB;

[**

* Send Xrl intended to:

*

* Add/replace/delete a route.

* @param dst_xrl_target_name the Xrl target name of the desti nation.
* @param protocol the name of the protocol this route comes fro m.
* @param unicast true if the route is for the unicast RIB.
* @param multicast true if the route is for the multicast RIB.
* @param network the network address prefix of the route.
* @param nexthop the address of the next-hop router toward the
* destination.
* @param metric the routing metric.
* @param policytags a set of policy tags used for redistributi on.
* [
bool send_add_route4(
const char=* dst_xrl_target_name,
const string& protocol,
const bool & unicast,
const bool & multicast,
const IPv4Net& network,
const IPv4& nexthop,
const uint32_t& metric,
const XrlAtomList& policytags,
const AddRoute4CB& cb
)i
t ypedef XorpCallback2< voi d, const XrlError&, const IPv4 =>::RefPtr LookupRo
uteByDest4CB,;
| **

* Send Xrl intended to:
Lookup nexthop.

@param dst_xrl_target_ name the Xrl target name of the desti nation.
@param addr address to lookup.

* @param unicast look in unicast RIB.

* @param multicast look in multicast RIB.

* [
bool send_lookup_route by dest4(
const char = dst_xrl_target_name,
const IPv4& addr,
const bool & unicast,
const bool & multicast,

const LookupRouteByDest4CB& cb

22

Listing 13: Extracts fronmxorp/static _routes/xrl _static _routes _node.cc

voi d
XriStaticRoutesNode::send_rib_route_change()
{
bool success = true;
StaticRoute& static_route = _inform_rib_queue.front();

I
/I Send the appropriate XRL
I
i f (static_route.is_add_route()) {
i f (static_route.is_ipv4()) {
i f (static_route.is_interface_route()) {

} else {

success = _xrl_rib_client.send_add_route4(
_rib_target.c_str(),
StaticRoutesNode::protocol_name(),
static_route.unicast(),
static_route.multicast(),
static_route.network().get_ipv4net(),
static_route.nexthop().get_ipv4(),
static_route.metric(),
static_route.policytags().xrl_atomlist(),
callback(this, &XrlStaticRoutesNode::send_rib_route_change_ch));

i f (success)

return;
}
}
}
voi d
XrlStaticRoutesNode::send_rib_route_change_cb(const XrlError& xrl_error)
{

swi tch (xrl_error.error_code()) {

case OKAY:
1
/I If success, then send the next route change
1
_inform_rib_queue.pop_front();
send_rib_route_change();
br eak;

case COMMAND_FAILED:
1
/I If a command failed because the other side rejected it,
/I then print an error and send the next one.
1

24

br eak;
case NO_FINDER:
case RESOLVE_FAILED:
case SEND_FAILED:

br eak;
case BAD_ARGS:
case NO_SUCH_METHOD:
case INTERNAL_ERROR:

br eak;

case REPLY_TIMED_OUT:

case SEND_FAILED_TRANSIENT:

br eak;

25

We actually create the callback using the call:
callback(this, &XrlStaticRoutesNode::send rib _route _change _cb)
In the context of Listing 13his refers to a pointer to the current instanceXdbtaticRoutesNode . So,
what this callback does is to wrap a pointer to the metkwdl _rib _route _change _cb() on the current
instance ofXrlStaticRoutesNode . Later on, when the response returns, the XrlIRouter will ited
send rib _route _change _cb() method on this specific instance XfiStaticRoutesNode and supply
it with a parameter of typeonst XrlError&

In the implementation ofend _rib _route _change cb() we can see that we check the value of the
xrl _error parameter to see whether the XRL call was actually sucdesshot. If the return error code
is OKAYwe send the next route change. Otherwise, we take diffemioinag based on the error type.

6.1 Returning values in XRLs

Because thstatic.routesprocess is so simple, none of the XRLs it calls actually reamy information in
the response. However, it's rather common that we want toenaatequest of a target and get back some
information. This is quite easy to do, but just requires d&edint callback that can receive the relevant
parameters.

In Listing 11 we saw that the XRlookup _route _by_dest4 returns one value of typev4 called
nexthop . XRLs can actually return multiple parameters - this is fyeaesimple example.

In Listing 12 we can see that the callback we need to suup$end lookup _route _by dest4() is
of type:
XorpCallback2<void, const XrlError&, const IPv4 * > RefPtr
This is just like the callback we have already seen, excegitttie method the callback will call must take
two arguments. The first must be of typenst XrlError& and the second must be of typenst
IPv4 =, Although staticroutes has no such callback method, if it did it might look like thenétion
lookup _route _by dest4 _cb inListing 14. The callback itself to be passed intmd lookup _route _by dest4()
is created in exactly the same way as the one we passeskimdaadd _route4()

Listing 14: Hypothetical callback fasend _lookup _route _by_dest4()

voi d
XrlStaticRoutesNode::lookup_route_by dest4 ch(const XrlError& xrl_error,
const IPv4 = nexthop)

{

i f (xrl_error == XrlError::OKAY()) {

printf("the nexthop is %s\n", nexthop->str().c_str());

}

}

26

7 Compiling the Source Code

If any of the Makefile.am or configure.in files are modified,rthbe ./bootstrapscript in the XORP top-
level directory must be executed first. It will run the appraje autotools to generate the corresponding
Makefile.in files and theonfigurescript. After that the/configurescript must be run followed bgmake

Note that XORP assumes certain versions of the autocoaffeite/libtool versions have been installed.
Those versions are listed in the README in the top-level XQdi@ctory. If the installed versions are
different, then the result is unredicted so it is best toalhstersions that are as close as possible to those
listed in the README.

Thebootstrapscript itself assumes that the autotools executable pmogfeve certain names. E.g.,:

ACLOCAL=${ACLOCAL:-"aclocal110"}
AUTOCONF=${AUTOCONF:-"autoconf261"}
AUTOHEADER=${AUTOHEADER:-"autoheader261"}
AUTOMAKE=${AUTOMAKE:-"automake110"}
LIBTOOLIZE=${LIBTOOLIZE:-"libtoolize"}

If the default names don’'t match, then set the followingadales in the shell environment to the appro-
priate names before runnindpootstrap

e ACLOCAL
AUTOCONF

AUTOHEADER

AUTOMAKE

LIBTOOLIZE

27

8 The XLOG Logging Facility

The XORP XLOG facility is used for log messages generationilar to syslog. The log messages may be
output to multiple output streams simultaneously. Beloa @escription of how to use the log utility.

e The xlog utility assumes thaORP_MODULE_NANséEdefined (per module). To do so, you must
have in your directory a file like “foanodule.h”, and inside it should contain something like:

#define XORP_MODULE_NAME "BGP"

This file then has to be included by each *.c and *.cc file, and3VUe the first of the included local
files.

e Before using the xlog utility, a program MUST initialize itst (think of this as the xlog constructor):
int xlog_init(const char * process_name, const char * preamble_message);

Further, if a program tries to use xlog without initializiridirst, the program will exit.

e To add output streams, you MUST use one of the following (¢h}o

int xlog_add_output(FILE * fp);
int xlog_add_default_output(void);

e To change the verbosity of all xlog messages, use:
xlog_set_verbose(xlog_verbose t verbose level);
where “verbosdevel” is one of the following XLOG_VERBOSE_M#AXcluded):

typedef enum {

XLOG_VERBOSE_LOW = 0, 0 */
XLOG_VERBOSE_MEDIUM, /1 %]
XLOG_VERBOSE_HIGH, $ 2 %]

XLOG_VERBOSE_MAX
} xlog_verbose t;

Default value isXLOG_VERBOSE_LQWast details). Larger value for “verbagael” adds more
details to the preamble message (e.g., file name, line nyreberabout the place where the log
message was initiated).

Note that the verbosity level of message tydleOG_LEVEL_ FATAIl(see below) cannot be changed
and is always set to the most verbose le¥élQG_VERBOSE_HIGQH

e To change the verbosity of a particular message type, use:

28

void xlog_level_set verbose(xlog_level t log_level,
xlog_verbose_t verbose_level);

where “loglevel” is one of the following XLOG_LEVEL_MINandXLOG_LEVEL_ MAXRxcluded):

typedef enum {

XLOG_LEVEL_MIN = 0, [+ 0 */
XLOG_LEVEL_FATAL = 0, [+ 0 */
XLOG_LEVEL_ERROR, # 1 %/
XLOG_LEVEL_WARNING, ¥ 2 %/
XLOG_LEVEL_INFO, [% 3 %/
XLOG_LEVEL_TRACE, k4 x]

XLOG_LEVEL_MAX
} xlog_level t;

Note that the verbosity level of message tyfdeOG_LEVEL_FATAIcannot be changed and is always
set to the most verbose lev{l(OG_VERBOSE_HIGH

e To start the xlog utility, you MUST use:
int xlog_start(void);
e To enable or disable a particular message type, use:

int xlog_enable(xlog_level_t log_level);
int xlog_disable(xlog_level_t log_level);

By default, all levels are enabled. Note thdtOG_LEVEL_ FATAIlcannot be disabled.

e To stop the logging, use:
int xlog_stop(void);

Later you can restart it again byog_start()

e To gracefully exit the xlog utility, use
int xlog_exit(void);

(think of this as the xlog destructor).

Listing 15 contains an example of using the XLOG facility.

29

Listing 15: An example of using the XLOG facility

i nt
main(i nt argc, char =*argv[])
{
1
/I Initialize and start xlog
1
xlog_init(argv[0], NULL);
xlog_set verbose(XLOG_VERBOSE_LOW); I/l Least verbose messages
I/l Increase verbosity of the error messages
xlog_level_set verbose(XLOG_LEVEL ERROR, XLOG_VERBOS E_HIGH);
xlog_add_default_output();
xlog_start();

/I Do something

1

/I Gracefully stop and exit xlog
1

xlog_stop();

xlog_exit();

exit (0);

Typically, a developer would use the macros described b&gwint a message, add an assert statement,
place a marker, etc. If a macro accepts a message to prirfpriinat of the message is same as printf(3).
The only difference is that the xlog utility automaticalldds’\n’ , (i.e. end-of-line) at the end of each
string specified byormat

e XLOG_FATAL(const char =format, ...
Write a FATAL message to the xlog output streams and aborprbgram.

e XLOG_ERROR(const char =format, ...)
Write an ERROR message to the xlog output streams.

e XLOG_WARNING(const char =format, ...
Write a WARNING message to the xlog output streams.

e XLOG_INFO(const char *format, ...)
Write an INFO message to the xlog output streams.

e XLOG_TRACE(int cond_boolean, const char *format, ...)
Write a TRACE message to the xlog output stream, but ordpifd_boolean is not 0.

e XLOG_ASSERT(assertion)
The XORP replacement for assert(3), except that it cannaohditionally disabled and logs error
messages through the standard xlog mechanism. ItXa{¥G FATAL() if the assertion fails.

e XLOG_UNREACHABLE()
A marker that can be used to indicate code that should nevexdmited.

30

e XLOG_UNFINISHED()
A marker that can be used to indicate code that is not yet imgitéed and hence should not be run.

31

9 Thertrmgr Template Files

TODO: add description how to write rtrmgr template files.

For the time being, the developer can check the “XORP Routrdger Process (rtrmgr)” document for
information about the template semantics, and can usedifgetc/templates/static _routes.tp
as an example.

32

A Modification History

July 19, 2004: Initial version 1.0 completed.
April 13, 2005: Updated to match XORP release 1.1: Added th®®& logging facility section.
March 8, 2006: Updated to match XORP release 1.2: Updateé sbthe sample source code.

August 2, 2006: Updated to match XORP release 1.3: The XRite@ sample code is modified to
match the original code. Miscellaneous cleanup.

March 20, 2007: Updated to match XORP release 1.4: Updateé sbthe sample source code.
July 18, 2007: Added Section 7: Compiling the Source Code.
July 22, 2008: Updated to match XORP release 1.5: No significiaanges.

References

[1] XORP Design Architecture. XORP technical documentp#ivww.xorp.org/.

[2] XORP Inter-Process Communication Library. XORP techhdocument. http://www.xorp.org/.

[3] XORP Libxorp Library Overview. XORP technical documehttp://www.xorp.org/.

[4] XRL Interfaces: Specification and Tools. XORP technigatument. http://www.xorp.org/.

33

