XORP BGP Test Harness
Version 1.6

XORP, Inc.
http://mww.xor p.org/
feedback@xorp.org

January 7, 2009

1 Introduction

This document describes a test harness that was built piyniatest the XORP BGP implementation. It
may be possible to augment the harness to use it for testiray ptotocols.

A single BGP process is placed in the harness and tests dogrped on it. The tests can range from
testing the decision process to verifying that a sessionojged when the hold timer expires.

2 Requirements

A major requirement was to allow the testing of any BGP precest just our own. In the case of our
own BGP process it was essential that regression tests beulan and results verified totally from within
scripts, without the need for any manual configuration. TER® BGP regression tests can be run directly
from the “Makefiles”.

The test harness supports testing at various levels:

e Decision process.

The BGP decision process can be tested by sending updatetpackBGP, then verifying that the
correct update packets are sent by the BGP process to theBi## peers. The actual packets sent
by the BGP process can be compared to expected packets.

Another way that the BGP decision process can be tested issting the routing tables held at the
peers.

e Low level testing.
Testing responses to deliberately corrupted packets.

e Load testing.
Testing reaction to introducing a large number of routek badack.

e Timer testing.
Correct operation of timers such as the HOLD TIME timer.

3 Usage

XRL XRL

Coordinator

A

XRL

Test Script

Figure 1: Test harness processes.

Figure 1 shows a BGP process under test that is connecteatiesivpeers. The test harness has been
split into a number of separate processes. The main reasogif@g multiple processes is that a third party
BGP processes may not be able to accept multiple connedtmmshe same host (IP address). The harness
was also simpler to implement by splitting functionalitydrseparate processes.

The test harness consists ota@ordinator process through which all interactions with the harness are
mediated. There are also one or mtest peers. Eachtest peer is capable of forming one BGP session
with the BGP process under test. Temordinator process communicates with thest peers using XRLs
[1]. The coordinator process accepts commands via XRLs from test scripts. Glyrreur test scripts are
written in the shell programming language, but they coulevbéien in almost any language. The full set of
commands accepted by tbheordinator can be found in 4.1.

Figure 2 shows an example of a simple program that might biefigen a test script to @oordinator.

It is assumed that before the script is sent that all the gg&Eseare already running. One important point
to note is that due to the asynchronous nature of XRLs a commetarning does not necessarily mean
that it has completed successfully.panding method is available that can be used to test if all outstandin
commands have completed. This example shovedbedinator beingreset, then its given the hostname and

port number of the BGP process under test. Therctioedinator attaches to the twtest peers peerl and

peer2, these are the XRL target names by whichiektepeers are known. The majority of the commands
are sent to theest peers themselves. In order to send a command tesapeer the command is preceded
by thetest peer name. In our example eadbst peer forms a session with the BGP process and then the
assert command is used to assert that a session is still establigkeedoted above thestablish command
completing does not mean that a session was establishedu@kcattempting to sendoacket on a session
that has not yet been established will generate an error.

reset

target xorp 179

initialise attach peerl

initialise attach peer2

peerl establish active true AS 1 keepalive true holdtinme 0 id 10.10.10.10
peerl assert established

peer2 establish active true AS 2 keepalive true holdtinme 0 id 20.20.20.20
peer2 assert established

Figure 2: Establish BGP Sessions

The expect packet ... command is used to create a queue of expected packets. Véhengacket
arrives on a peer it is checked against the queue of expeatd@is. If there are no expected packets on the
gueue then no action is taken. If there is a packet on the expecie it is compared against the incoming
packet. If the incoming packet matches, all is fine and th>ds removed from the queue. If the incoming
packet does not match the packet at the head of the queuearthemor is flagged and the non matching
packet is saved. At the end of a set of testsasert queue command can be used to verify that queue is
at the expected length. If an error has occurred, this is ¢ pt which the non matching packet and the
expected packet are returned, along with an error statggiré-B8 is a example of a code fragment that is
waiting for a notify packet on peerl. A notify packet is addedhe queue of expected packets, then an
update packet without an origin is sent to the BGP processupiiate packet without an origin is an error
and should generate the notify packet that is expected. tNatet is the responsibility of test script to add
a delay between sending thpdate packet and theassert.

Update error, missing well known attribute.

peer1l expect packet notify 3 3

An updat e packet without an origin

peerl send packet update aspath 1 nexthop 20.20.20.20 nlri 10.10.10.0/24
Del ay

peerl assert queue O

Figure 3: Wait for a notify packet

Eachpeer has two tries associated with it, a sent and a received teeh Hpdate packet that is sent to,
or received from, the BGP process is passed to the apprepriat At this time two types adfookups can
be performed on a trie (Figure 4). Iflaokup fails then an error is returned. A test might therefore imgol
sending many update packets from different peers and théfiying that the routing tables at the various
peers are correct. Saving the update packets in the triessmitgbossible to dump the routing tables for post
processing.

peerl trie recv | ookup 212.174.196.0/ 24
peerl trie recv | ookup 212.174.196.0/24 aspath 1

Figure 4: Performing lookup in trie

4 Commands

4.1 COORD XRLs

e Command("command string”)
Accept commands via XRLs.

e Status("peername”)

Returns the status of the named test peer. Can be used to iflei@eer is established or not. Plus
the number of update messages sent or received by the peisrXRh will not return an error if
the requested peer does not exist. Can be used in test goriptst for established, not established
transitions. As well as waiting for a peering to become gbétause all the state is synchronised.

e Pending()

Returns true while there are any uncompleted commands. €asdal to poll the coordinator to verify
that the previous command has completed.
4.1.1 Commands currently accepted by coord

e reset
Reset all the state in the coordinating process.

e target <hostname> <port>
Specify the BGP process under test.

e initialise attach/create peername
Form an association with a tegeer. If the second argument is attach then it is assumedhbat
testpeer is already running. If the second argument is createttigetesipeer is started (not currently
supported).

4.1.2 Peer specific commands

e connect
Connect to the BGP target under test.

e disconnect
Disconnect from the BGP target under test.

e listen
Listen for a connection from the BGP test target.

4

e establish active <true/false> AS <value > keepalive <trueffalse> holdtime <value> id <ipv4>
ipv6 <trueffalse-

The active, AS, keepalive, holdtime, id and ipv6 argumergsoptional. Active defaults to being true
and actively makes a connection, setting active to false \geta listener. The AS value is recom-
mended if a connection is wanted. The ipv6 argument deftaufase.

e send packet update origin <num> aspath <path> nexthop <ipv4> nexthop6 <ipv6> local-
pref <num> nlri <net4> nlri6 <net6> withdraw <net4> withdraw6 <net6> med <value>
originatorid <ipv4> clusterlist <ipv4> community <community> pathattr <num,num,num,...>

Send a BGP update packet to the BGP test target with the sakwifihdrawn routes, NLRI, and path
attributes. The “pathattr” argument takes a list of comme@asated byte values in decimal or hex.
The “patthattr” exists to test optional path attributeshbould be noted that at this time it is not possi-
ble to create an illegal path attribute. The aspath can takarfgument “empty” denoting and empty
aspath. The community can take either a number (in octaip@dor hex) or the well known name
“NO_EXPORT”, “NO_ADVERTISE” or “NO_EXPORT.SUBCONFED”, multiple communities can
be added using multiple community statements.
e send packet notify <error code> <sub error code>

Send a notification packet. Theerror code- is mandatory. Thecsub error code is optional.

e send packet keepalive
Send a keepalive packet.

e send packet open asnum <value> bgpid <ipv4> holdtime <value> afi <value> safi <value>
Send an open packet. All fields apart from afi and safi are marndat

e send packet corrupt <offset> <value> ...

Any of the packets listed above can be corrupted by precgediiin the corrupt keyword followed by
an offset and value. The offset must fall within the packes, affset starts from zero. Multiple offset
value pairs may be used. An example of corrupting a keepeéinebe seen in Figure 5.

peerl send packet corrupt 0 O keepalive

Figure 5: Corrupt a keepalive

e send dump mrtd update filename <packet count>
Given a file in mrtd dump format send the update packets irfitaisOptionally supply a packet count
for the number of update packets that should be sent.

e trie <recv/sent> lookup <net>
Test to see if this net is in the test peer’s send or receige tri

e trie <recv/sent> lookup <net> not
Test to see if this net is not in the trie.

trie <recv/sent> lookup <net> aspath <path>

Test to see if this net is in the trie and associated with tlogided AS path. The AS path can be to
the value “empty” if a check for an empty AS path is required.

expect packet notify <error code> <sub error code >

Place a notification packet on the expect queue. Ibeor code- is mandatory. Thecsub error
code> is optional.

expect packet update origin <num> aspath <path> nexthop <ip> localpref <num> nlri
<net> withdraw <net>

Place an update packet on the expect queue. The aspath eahdaktgument “empty” denoting and
empty aspath.

expect packet open asnum <value> bgpid <ipv4> holdtime <value>

Place an open packet on the expect queue. All fields shownamdatory.

expect packet notify
Place a notify packet on the expect queue.

assert queue <queue length>

Check the queue length of the expect queue. Every messdgadtehes removes an entry from the
queue. If an error has previously occurred then this callreilirn the error. The length of the queue
check is optional.
assert connected

Verify that a TCP session exists.

assert established

Verify that a BGP session has actually been established.e$ests can pass without a BGP process
being present. These tests require this interface.

assert idle

Verify that no session is currently established. UsefuMenifying that after an error the session has
actually been torn down.

dump <recv/sent> <mtrd/text> <ipv4/ipv6> <traffic/routeview/replay/debug> <filename >

A mechanism for saving conversations or dumping routintetabl he received and sent cases can be
dealt with independently. Four types of dumps are supported

1. Traffic.

The is basically all the traffic which is sent and received.e Tumping can be disabled by
making a call with the<filename> argument removed.

2. Routeview.
The current state of the routing table.

3. Replay

Trawls through the routing table and dumps all the updat&giachat have caused entries in the
routing table. The packets are dumped in the order in whiep #nrived.

4. Debug.

Visit all nodes in the trie and dump the update packet thatresgonsible for this entry. Update
packets can have multiple NLRI's associated with them sockeiecan be in the dump many
times.

The save file can be either in mtrd dump format or in xorp texnfat.

4.2 TEST PEER XRLs

Commands that are accepted by the test peer. This intedaced by the coordinating process to control
the test peers. It should never be used directly and is dotiethdnere for completeness.

e Register("coord”)
This is an external registration to the test peer. All pesketeived by the test peer are sent to the
"coord”.

e Packetisation(’bgp”)
Tell the test peer to treat incoming packets as BGP packetsepse them accordingly. Otherwise
just packetise the the packets the way they appear from tiheection.

e Connect("host”, "port”)
Connect to the named host and port.

e Listen("address”, "port”)

Listen for connections on this address and port.

e Bind("address”, "port”)

Bind on this address and port. This command exists solelgdbthat the entity under test does not
block in connect. It is not a requirement to make a call to &bibefore the “connect” or “listen”
commands.

e Send("Data”)
Send data on the TCP connection.

e Disconnect()
Drop the current TCP connection.

e Terminate()

Terminate the process.

4.3

TEST PEER CLIENT XRLs

This interface is implemented by the coordinator which itient of the test peer.

Packet("peer”, "status”, "time”, "data”)

— "peer”
The peer that the packet came from.
— "status”
If the remote peer had been asked to perform packetisatiban T a bad message is received
signify this. Also after a bad is received packetisationisadlied.
— "time”
The time when the packet was received in micro seconds sBit@-1-1.
— "data”
The raw data that was read on the connection.

5 Outstanding Issues

At the time of writing the harness has only been used agaiesKORP BGP process. There is no
reason to believe that it could not be used against implestiens.

A Modification History

December 11, 2002: Initial version 0.1 completed.

March 10, 2003: Updated to match XORP release 0.2: The “migglinaent is supported for building
packets. Miscellaneous cleanup.

June 9, 2003: Updated to match XORP release 0.3: No changes.
August 28, 2003: Updated to match XORP release 0.4: Addednr#tion about new features.

November 6, 2003: Updated to match XORP release 0.5. Addedmation about “assert idle”.
Miscellaneous cleanup.

July 8, 2004: Updated to match XORP release 1.0: Added irdtiam about new features.

April 13, 2005: Updated to match XORP release 1.1: The “afil &afi” arguments are supported
for building packets.

March 8, 2006: Updated to match XORP release 1.2: Addednrdtion about new features.

August 2, 2006: Updated to match XORP release 1.3: Addedosufgr setting the community
attribute in BGP update packets. Miscellaneous cleanup.

March 20, 2007: Updated to match XORP release 1.4. No changes
July 22, 2008: Updated to match XORP release 1.5: No changes.

References

[1] XORP Inter-Process Communication Library. XORP techhdocument. http://www.xorp.org/.

