XORP Libxorp Library Overview
Version 1.6

XORP, Inc.
http://www.xorp.org/
feedback@xorp.org

January 7, 2009

1 Introduction

Thelibxorp library contains a set of classes for basic XORP functityalich as IP addresses and subnets,
timers, event loops, etc. It is used by virtually every otk€@RP component, and its main purpose is to
simplify the implementation of those components.

1.1 Overview
Currently, the libxorp library contains the following ctes and components (in alphabetical order):
e asnum.hh: class AsNurA class for storing an AS number used by protocols such as BGP
e asyncio.hh: class AsyncFileReader, class AsyncFileWrieynchronous file transfer classes.
e buffer.hh: class BufferA class for storing buffered data.
e bufferedasyncio.hh: class BufferedAsyncRead@uffered asynchronous file reader class.
e c_format.hh: cformat(} A macro that creates a C++ string from a C-style printf@pniatted string.
e callback.hh, callbaclkdebug.hh, callbackiodebug.hh, safeallback obj.hh Callback mechanism.
e clock.hh: class SystemClack class for providing the interface to obtain the systencklo
e configparam.hh: template class ConfigParas class for storing a configuration parameter.
e debug.h Provides facility for generating debug messages.
e ethercompat.h Ethernet manipulation compatibility functions.

e eventloop.hh: class EventLoopvent loop class for coordinated operations between sraad 1/0
operations on file descriptors.

e exceptions.hhStandard XORP C++ exceptions.

e heap.hh: class HeapProvides Heap data structure.

ioevents.hhEnumeration of various event types supported by the |/(aek facade.

ipnet.hh, ipv4net.hh, ipvbnet.hh, ipvxnet.hh: class Neet4 class IPv6Net, class IPvXNé&hplemen-
tation of classes for basic subnet addresses (for IPv4, #dédual IPv4/6 address family respec-
tively).

ipv4.hh, ipv6.hh, ipvx.hh: class IPv4, class IPv6, classdPmplementation of classes for basic IP
addresses (for IPv4, IPv6 and dual IPv4/6 address famipetsely).

mac.hh: class MacContainer for MAC address.

nexthop.hhClasses that contain routing next-hop information.

popen.hh The interface for the local implementationfmdpen(2)andpclose(2)
profile.hh Implementation of a mechanism for event profiling.

random.h Local implementation of random(3).

range.hh: class U32Range, class IPv4Range, class IPvdRanget of classes that implement linear
ranges €.9.,integers or addresses).

ref_ptr.hh: template class rgbtr: Reference counted pointer class.

ref_trie.nh: Implementation of a trie to support route lookups. Basedri@ihh, but with reference-
counted storage supporting delayed deletion.

round.robin.hit Round-robin queue implementation.
run_.command.hh: class RunCommardclass for running an external command.

safecallback obj.hh: class CallbackSafeObjedimplementation of a base class for objects that are
callback safe.

selector.hh I/O multiplexing interface.
service.hh Provides base for asynchronous service classes.

statuscodes.h Process states status codes used by processes whemgepwetr operational status
to the router manager.

task.hh: class XorpTaskriority-based task implementation.
time_slice.hh: class TimeSlic& class for computing whether some processing is takinddng.
timer.hh: class XorpTimerXORP timer facility.

timespent.hh: class TimeSpett class used for debugging purpose to find code that has taken
long to execute.

timeval.hh: class TimeVaA class for storing time values (similar gbruct timeva).

tiv.hh: class Tlv Facility for reading and writing TLV (Type-Lenght-Valuegcords.

e token.hh Token related definitions.

e transactions.hhFacility for transaction operations.

e trie.hh: Implementation of a trie to support route lookups.

e utility.h: Contains various mini-utilities (mostly compiler-redat helpers).

e utils.hht Contains various utilitiese(g.,to delete a list or array of pointers and the objects poirdgd t
e vif.hh: class Vif, class VifAdd\irtual interface and virtual interface address classes.

e win_dispatcher.hh, wino.hh: Windows-specific header files.

e xlog.h Provides facility for log messages generation.

e xorp.h The XORP main include file that should be included by all XORBnd C++ files.

xorpfd.hh: class XorpFdimplementation of a wrapper class used to encapsulate @efiieriptor.

Each of the components is described in Section 2.

2 Components Description

This section contains a brief description of each of the camepts of thdibxorp library. This description is
for informative purpose only. The source code for each camapbis the ultimate source for programming
reference, and implementation details.

2.1 asnum.hh

This file containglass AsNuma class for storing an AS number used by protocols such as B@s class
can be used to store an AS number that can be either 16 or 3Dbitgnally, the AS numbers were defined
as 16-bit unsigned numbers. Later the “extended” AS numers introduced, which are unsigned 32-bit
numbers.

2.2 asyncio.hh

This file contains asynchronous file transfer classes. Tatlsse XORP EventLoop and its SelectorList
to read or write files asynchronously. The user creates andkSle{Reader,Writef and adds a buffer for
reading or writing with adduffer(). A callback provided with each buffer is called gvéme 1/0O happens
on the buffer. Reading or writing only begins when start@a#ied, and normally continues until there are
no buffers left.

From the developer’s point of view, the following classes af interest:class AsyncFileReader, class
AsyncFileWriter

2.3 buffer.hh

This file containglass Buffer a class for conveniently storing and accessing bufferéal d@urrently it has
limited applicability.

2.4 Dbuffered.asyncio.hh

This file containsclass BufferedAsyncReaden class for buffered asynchronous file reading. Unlike the
class AsyncFileReadésee Section 2.2) which delivers data whenever it is availdbeclass BufferedAsyn-
cReadelbuffers the data and delivers it whenever its size has relsalpeedefined threshold.

2.5 cformat.hh

This file containc_format() a macro that creates a C++ string from a C-style printf@jrfatted string. It
takes the same arguments as printf(3), but %n is illegal dlhdause abort to be called.

In practice,c_format() is a hasty macro, but by doing this we can check the compile &rguments are
sane and the run time arguments.

2.6 callback.hh, callbackdebug.hh, callbacknodebug.hh, safecallback_obj.hh

These files contain an implementation of a callback mechan}$ORP is an asynchronous programming
environment and as a result there are many places wheradallare useful. Callbacks are typically
invoked to signify the completion or advancement of an asym@ous operation.

XORP provides a generic and flexible callback interface tititizes overloaded templatized functions
for generating callbacks in conjunction with many small pdatized classes. Whilst this makes the syntax
a little unpleasant, it provides a great deal of flexibility.

XorpCallback objects are objects created by the callbdak@tion which returns a reference pointer to
a newly created callback object. The callback is invokeddllng the dispatch() method on that object.

There are two versions of the callback mechanism: debug andlebug version. The debug version
includes additional information with each callbaekd.,file name and line number where the callback was
invoked), records callback tracing events, etc, but ceeatiitional overhead to the system. Non-debug
callbacks are used by default; the debug callbacks can lmeehiy definingDEBUG.CALLBACKbefore
including callback.hh or by running./configure —enable-callback-debbgfore compiling XORP.

For more details on the callback mechanism, and for usagem@ga, see the beginning cdllback debug.hh
or callback nodebug.hhNote that these files are auto-generatedddipack-gen.pya Python script), there-
fore they should never be edited.

2.7 clock.hh

This file contains the implementation ofass SystemClocthat provides the interface for obtaining the
system clock.

2.8 configparam.hh

This file contains the implementation tdmplate class ConfigParana class for storing a configuration
parameter.

This class can be used to store the value of a configurati@meer. Such parameter has a current and
a default value. Th€onfigParanclass has the facility to add a callback that is invoked whenthe value
of the configuration parameter is changed.

2.9 debug.h

This file provides facility for debug messages generationrévspecifically, it defines thdebug_nmsg() ,
the macro responsible for generating debug messageseéttias same arguments as printf(3). For example:

debug_nsg(" The nunber is %\ n", 5);

For more details see the comments inside that file.

2.10 ethercompat.h

This file contains Ethernet-related manipulation comjlititfunctions. For example, it includes the appro-
priate system files, and declares functietder _at on() andet her _nt oa() (implemented locally in
ethercompat.¢ if the system is missing the correspondieigher _at on(3) andet her _nt oa(3).

2.11 eventloop.hh

This file definesclass EventLoaop It is used to co-ordinate interactions between a Timeraisd a Se-
lectorList for XORP processes. All XorpTimer and selectragiens should be co-ordinated through this
interface.

2.12 exceptions.hh

This file containclass XorpExceptiama base class for XORP C++ exceptions. It contains alsoaidsird
XORP C++ exceptions. An example of such exceptioriass InvalidFamilywhich is thrown if the address
family is invalid (for example, by an IPvX constructor whewaoked with an invalid address family).

2.13 heap.hh

This file containglass Heap The Heap class is used by the TimerList class as it's pyigueue for timers.
This implementation supports removal of arbitrary objdicisn the heap, even if they are not located at the
top.

2.14 ioevents.hh

This file contains the enumeratéoEventTypecodes: various event types supported by the I/O callback
facade. The event types are used by clients when registetiergst in 1/0 events.

2.15 ipnet.hh, ipv4net.hh, ipvénet.hh, ipvxnet.hh

These files contain the declaration of the following classtsss IPv4Net, class IPv6Net, class IPvXNet
which are classes for basic subnet addresses (for IPv4,dRd@ual IPv4/6 address family respectively).
IPvXNet can be used to store a subnet address that has éttheot IPv6 address family.

Most of the implementation is contained in fifnet.hl) which contains demplate class IPNetThe
IPv4Net, IPv6Net, and IPvXNet classes are derived fromtémaplate.

2.16 ipv4.hh, ipv6.hh, ipvx.hh

These files contain the declaration for the following classtass IPv4, class IPv6, class IPy¥hich are
classes for basic IP addresses (for IPv4, IPv6 and dual 6RPadidress family respectively). IPvX can be
used to store an address that has either IPv4 or IPv6 addiredsy. f

2.17 mac.hh

This file declares the following classtass Mac This class is a container for a 48-bit MAC address.

2.18 nexthop.hh

This file declares a number of classes that can be used tdrcontiing next-hop information. For example,
class NextHops the generic class for holding information about routirxtrhops. NextHops can be of
many types, including immediate neighbors, remote roteith IBGP), discard or unreachable interfaces,
encapsulation endpoints, etc. NextHop itself doesn’tyedd anything useful, except to provide a generic
handle for the specialized subclasses. The specializetlasisies are:

e IPPeerNextHop is for next hops that are local peers.

IPEncapsNextHop is for “next hops” that are non-local, aeglire encapsulation to reach. An ex-
ample is the PIM Register Encapsulation.

IPExternalNextHop An IP nexthop that is not an intermedregighbor.

DiscardNextHop is a discard interface.

UnreachableNextHop is an unreachable interface.

2.19 popen.hh

This file contains the interface for the local implementatad popen(2)andpclose(2) The corresponding
local names ar@open2()and pclose2()respectively. Unlike the systemjgopen(2) the localpopen2()

implementation allows the user to specify the streams wtierstdoutandstderr of the command will be
redirected to.

2.20 profile.hh

This file implements the mechanism for event profiling. Theettegper can add profiling entries at various
places of the program. Each profiling entry has a hame andibeaenabled or disabled. In addition, a
number of strings can be added to each profiling entry, argkthtsings can be read at some later stage.
2.21 random.hh

This file declares the API for the local implementation ofdam(3).

2.22 range.hh

This file implements the following classesdass U32Range, class IPv4Range, class IPv4Range

Those classes implement linear ranges XeXj(for integers or addresses). A linear range is defined
by its low and high inclusive boundaries. It is the user'possibility to ensure that the condition (low
high) always holds.

2.23 refptr.hh

This file declaresemplate class reptr: reference counted pointer class.

The refptr class is a strong reference class. It maintains a coumwimany references to an object ex-
ist and releases the memory associated with the object vleaefierence count reaches zero. The reference
pointer can be dereferenced like an ordinary pointer tornathods on the reference counted object.

At the time of writing the only supported memory managemsiiiough the new and delete operators.
At a future date, this class should support the STL allocalasses or an equivalent to provide greater
flexibility.

2.24 reftrie.hh

This file implements a trie to support route lookups. The enpntation is template-based, and is based
on the code in trie.hh. From deleloper’s point of view, teatgs RefTrie, RefTrieNode, RefTriePreOrderlt-
erator, and RefTriePostOrderlterator are the most impbrtéhose templates should be invoked with two
classes, the basetype “A’ for the search Key (which is a dbmiNet <A>), and the Payload.

RefTrie differs from Trie (and its associated classes) &t the RefTrieNode includes a reference count
of how many RefTrielterators are pointing at it. If a RefNizde is deleted, but has a non-zero reference
count, deletion will be delayed until the reference courtdmees zero. In this way, additions and dele-
tions to the RefTrie cannot cause a RefTriePreOrderltemtBRefTriePostOrderlterator to reference invalid
memory, although a deletion and subsequent addition casedae payload data referenced by an iterator
to change.

2.25 round.robin.hh

This file implements round-robin queue which is used by therity-based task implementation (see Sec-
tion 2.31). It is used internally by libxorp and shouldn’t lieed by the rest of the system.

2.26 run.command.hh

This file implementslass RunCommanahich provides the mechanism for running an external contman
In addition to the command name and its arguments, the demetan specify three callbacks:

e stdoutch: the callback to call when there is data on the standard tutpu
e stderr.ch: the callback to call when there is data on the standard.error

e donech: the callback to call when the command is completed.

2.27 safecallback obj.hh

This file declares clas€allbackSafeObjectObjects that wish to be callback safe should be derived from
this class. When a CallbackSafeObiject is destructed itnméaall the callbacks that refer to it that this is the
case and invalidates (sets to null) the object they point to.

2.28 selector.hh

This file contains the I/O multiplexing interface. The peutar class of interest islass SelectorList

A SelectorList provides an entity where callbacks for pagdiO operations on file descriptors may be
registered. The callbacks are invoked when one of the seletiiods is called and I/O is pending on the
particular descriptors.

2.29 service.hh

This file declareglass ServiceBasé service is a class that can be started and stopped and typiddlly
involve some asynchronous processing to transition betwtses. The base class provides a state model
and methods for transitioning between states. Mandatangition methods, like start and stop, are abstract
in the base class.

2.30 statuscodes.h

This file contains the enumeratBdocessStatusodes that a XORP process should report to the XORP router
manager rifrmgr) [1]. The file itself contains a detailed explanation of theqess states (valid transaction
between states, triggering events, actions, etc).

2.31 task.hh

This file declares and implements cladass XorpTask ClassXorpTaskis used for priority-based tasks.
Each task can have a priority betweRRIORITYHIGHESTandPRIORITYLOWEST A number of sug-
gested priorities and weights are declared inside thas:clas

cl ass XorpTask {

public:
11
[l Task/Timer priorities. Those are suggested val ues.
11
static const int PRIORI TY_H GHEST = 0;
static const int PRIORITY_XRL_KEEPALI VE = 1;
static const int PRRORITY_H CGH = 2;
static const int PRIORITY_DEFAULT = 4;
static const int PRI ORI TY_BACKGROUND = 7;
static const int PRIORI TY _LONEST = 9;
static const int PRRORITY_INFIN TY = 255;

11

/1 Task/Ti mer weights. Those are suggested val ues.
11

static const int WEIGHT_DEFAULT = 1;

b

2.32 timeslice.hh

This file declareglass TimeSliceThis class can be used to compute whether some processaking too
long time to complete. It is up to the program that uses TineeS$b check whether the processing is taking
too long, and suspend processing of that task if necessary.

2.33 timer.hh

This file declares the XORP timer facility. The only class mterest from a developer’s point of view is
class XorpTimer

2.34 timespent.hh

This files declares and implemermiass TimeSpent his class used for debugging purpose to find code that
has taken too long to execute.

2.35 timeval.hh

This file contains implementation ofass TimeValor storing time values (similar tetruct timeva). TimeVal
implements the appropriate constructors and numerougshelpthods€.g.,Less-Than and Addition oper-
ators, etc).

2.36 tlv.hh
This file contains the implementation ciiss TIVfor reading and writing TLV (Type-Lenght-Value) records
from/to a file. The records are stored in network byte ordemnéd.

2.37 token.hh

This file contains various token-related definitions. Tokea sequence of symbols separated from other
tokens by some pre-defined symbols. In this implementatiom,separators are thed$pace(3) and '—
characters. The facilities in that file are to copy tokenmaeing them from a token line, etc. Currently,
this file is used only by the CLI, therefore in the future it nimymoved to the CLI itself.

2.38 transactions.hh

This file contains facility for transactions. A transacticonsists of a sequence of transaction operations,
each of which is a command. The TransactionManager clas&pa front-end for creating, dispatching,
and destroying transactions.

2.39 trie.hh

This file implements a trie to support route lookups. The enmntation is template-based. From deleloper’s
point of view, templates Trie, TrieNode, TriePreOrderdter, and TriePostOrderlterator are the most im-
portant. Those templates should be invoked with two claskedasetype “A’ for the search Key (which is
a subnet] PNet <A>), and the Payload.

2.40 utility.h

This file contains various mini-utilities. Those utilitiese mostly compiler-related helpersg.,compile-
time assertionlUNUSED(var)macro to suppress warnings about unused functions arganetot

2.41 utils.hh

This file contains various helper utilities. Currently, i@y two utilities are template functions to delete a
list or array of pointers and the objects pointed to.

2.42 vif.hh

This file declares the following classedass Vif, class VifAddr

Class Vif holds information about a virtual interface. A ¥ifay represent a physical interface, or may
represent more abstract entities such as the Discard omthmable interface, or a VLAN on a physical
interface. VifAddr holds information about an address ofréual interface. A virtual interface may have
more than one VifAddr.
2.43 windispatcher.hh, win.io.hh
Those are Windows-specific header files which are used adberny libxorp and shouldn’t be used by the
rest of the system.
2.44 xlog.h

This file provides facility for log messages generation,ilsinto syslog. The log messages may be output
to multiple output streams simultaneously. Below is a dpon of how to use the log utility.

e The xlog utility assumes thaORP_MODULE _NAME is defined (per module). To do so, you must
have in your directory a file like “foanodule.h”, and inside it should contain something like:

#defi ne XORP_MODULE_NAME " BGP"

This file then has to be included by each *.c and *.cc file, and3VUe the first of the included local
files.

e Before using the xlog utility, a program MUST initialize itst (think of this as the xlog constructor):

int xlog_ init(const char *process_nane, const char =*preanbl e _nessage);

10

Further, if a program tries to use xlog without initializiridirst, the program will exit.

To add output streams, you MUST use one of the following (@hYo

i nt x|l og_add_out put (FILEx fp);
i nt x|l og_add_defaul t_out put (void);

To change the verbosity of all xlog messages, use:
x| og_set _verbose(xl og_verbose t verbose | evel);
where “verbosdevel” is one of the following XLOG_VERBOSE _NMAX excluded):

typedef enum {

XLOG_VERBOSE_LOW = 0, [+ 0O %/
XLOG_VERBOSE_MEDI UM, [+ 1 %]
XLOG_VERBOSE_HI GH, [% 2 %]

XLOG_VERBOSE_MAX
} xl og_verbose t;

Default value isXLOG_VERBOSE _LOW(least details). Larger value for “verbagael” adds more
details to the preamble message (e.g., file name, line nyreberabout the place where the log
message was initiated).

Note that the verbosity level of message tyieOG LEVEL FATAL (see below) cannot be changed
and is always set to the most verbose le¥&I@G VERBOSE _HI GH).

To change the verbosity of a particular message type, use:

voi d xl og_l evel set_verbose(xl og_l evel t log_|evel,
xl og_verbose_t verbose_ | evel);

where “loglevel” is one of the following XLOG_LEVEL_ M NandXLOG _LEVEL_NMAXexcluded):

typedef enum {

XLOG LEVEL_M N = 0, [+ O */
XLOG_LEVEL_FATAL = 0, [+ O %/
XLOG_LEVEL_ERROR, [+ 1 */
XLOG_LEVEL_WARNI NG, [+ 2 %]
XLOG_LEVEL_I NFOQ, [+ 3 =/
XLOG_LEVEL_TRACE, [% 4 %]

XLOG_LEVEL_MAX
} xlog_level t;

Note that the verbosity level of message ty$héOG LEVEL FATAL cannot be changed and is always
set to the most verbose lev{l(OG VERBOSE HI GH).

11

e To start the xlog utility, you MUST use:
int xlog start(void);
e To enable or disable a particular message type, use:

i nt xl og_enabl e(xl og | evel t log |evel);
int xlog disable(xlog |level t log |evel);

By default, all levels are enabled. Note thxtOG LEVEL_FATAL cannot be disabled.

e To stop the logging, use:
int xlog stop(void);

Later you can restart it again by og_start ()

e To gracefully exit the xlog utility, use
i nt x| og_exit(void);

(think of this as the xlog destructor).

Below is an example of using the XLOG facility:

i nt
mai n(int argc, char xargv[])
{
11
/1 Initialize and start xlog
11
xlog_init(argv[0], NULL);
x| og_set _verbose(XLOG VERBOSE LOW ; // Least verbose nessages
/'l Increase verbosity of the error messages
xl og_l evel _set _verbose(XLOG LEVEL ERROR, XLOG VERBOSE H GH);
xl og_add_def aul t _out put ();
xl og_start();
/1 Do somet hing
11
/1 Gracefully stop and exit xlog
11
xl og_stop();
xlog_exit();
exit (0);
}

12

Typically, a developer would use the macros described b&gwint a message, add an assert statement,
place a marker, etc. If a macro accepts a message to prirfpriinat of the message is same as printf(3).
The only difference is that the xlog utility automaticallgds’ \ n’ , (i.e. end-of-line) at the end of each
string specified by or mat :

e XLOG FATAL(const char *format, ...)
Write a FATAL message to the xlog output streams and aborpibgram.

e XLOG ERROR(const char *format, ...)
Write an ERROR message to the xlog output streams.

e XLOG WARNI NG const char *format, ...)
Write a WARNING message to the xlog output streams.

e XLOG I NFQ(const char *format, ...)
Write an INFO message to the xlog output streams.

e XLOG TRACE(i nt cond_bool ean, const char *format, ...)
Write a TRACE message to the xlog output stream, but ordpiid _bool eanis not 0.

e XLOG ASSERT(assertion)
The XORP replacement for assert(3), except that it cannabhbditionally disabled and logs error
messages through the standard xlog mechanism. ItXlall&s FATAL() if the assertion falls.

e XLOG UNREACHABLE()
A marker that can be used to indicate code that should nevexdmuted.

e XLOG_UNFI NI SHED()
A marker that can be used to indicate code that is not yet imgitéed and hence should not be run.

2.45 xorp.h

This is the XORP main include file that should be included byX&@RP C and C++ files. This file itself
includes a number of frequently used system header filesiadesieveral commonly used values, etc.

2.46 xorpfd.hh

This file contains the implementation dfss XorpFdused to encapsulate a file descriptor.

It exists because of fundamental differences between UNIX Windows in terms of how the two
families of operating systems deal with file descriptorsmiast flavours of UNIX, all file descriptors are
created equal, and may be represented using an ’int’ typehwiki usually 32 bits wide. In Windows,
sockets are of type SOCKET, which is a typedef alias_oftuwhereas all other system objects are of type
HANDLE, which in turn is a typedef alias of 'void *'.

A Modification History

e December 11, 2002: Initial version 0.1 completed.

13

e March 10, 2003: Updated to match XORP release 0.2: AddednreEon about RefTrie. Miscella-
neous cleanup.

e June 9, 2003: Updated to match XORP release 0.3: Added iatom for ethercompat.h sta-
tus.codes.hutility.h, andxorp.h Updated the XLOG-related information.

e August 28, 2003: Updated to match XORP release 0.4: No significhanges.
e November 6, 2003: Updated to match XORP release 0.5: Addednation forservice.hh

e July 8, 2004: Updated to match XORP release 1.0: Added irdtom for callback debug.hhcall-
back nodebug.hhandtimespent.hh

e April 13, 2005: Updated to match XORP release 1.1: Addedrin&dion forbufferedasyncio.hh
clock.hh popen.hhprofile.hhh andrun_.command.hh

e March 8, 2006: Updated to match XORP release 1.2: Addednrdton forrange.hh tlv.hh and
xorpfd.hh

e August 2, 2006: Updated to match XORP release 1.3: No significhanges.

e March 20, 2007: Updated to match XORP release 1.4: Addednraton forioevents.hhrandom.h
round._robin.hh task.hh win_dispatcher.nhandwin_io.hh

e July 22, 2008: Updated to match XORP release 1.5: No significaanges.

References

[1] XORP Router Manager Process (rtrmgr). XORP technicalidwent. http://www.xorp.org/.

14

