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Chapter 1

Introduction

The idea of Packet switched networking systems has been around since early 1960s, where
the concept was explored independently by two recherches: Donald Davies at the National
Physical Laboratory in the UK and Paul Baran at the RAND Corporation1 in Los Angeles,
USA. Leonard Kleinrock, University California Los Angeles (UCLA) contributed the early
research in queuing theory that is an essential part of packet switching.

Since the beginning of the packet switched network area, packet routers have been
the central part of this network type. Packet switching is described in the article: packet
switching [1] at Wikipedia as:

Packet switching is a digital networking communications method that groups
all transmitted data - regardless of content, type, or structure - into suitably-
sized blocks, called packets. Packet switching features delivery of variable-bit-
rate data streams (sequences of packets) over a shared network. When travers-
ing network adapters, switches, routers and other network nodes, packets are
buffered and queued, resulting in variable delay and throughput depending on
the traffic load in the network.

One of the early and widely known implementations of a packet switching gateway
(today known as routers) was the IMP [2] (Interface Message Processor) that was used
to connect participant networks to the ARPANET from late 1960s to 1989 where routers
were generally commercially available. The Internet as we know it today is a successor of
the ARPANET where the basic packet switching protocols were developed, deployed and
tested in a wider scale.

1.0.1 Adressing
From the very beginning of packet switching networks – the concept of addresses assigned
to source and destination hosts has been an essential property of this type of network. The
Internet Protocol2 (IP) has since 1983 been used as the protocol at the ARPANET, and
since then – enabling the Internet to develop and expand to the Internet we know today.
Packets of the TCP/IP protocol contains addresses of the source host (sending host) and
of the destination host (the host intended to receive the packet) as the two most important

1Project RAND began after World War II as a special initiative within the Douglas Aircraft Company of Santa
Monica, California. The purpose was to continue in peacetime the advances in knowledge that civilian research
scientists had been recruited to develop during the war. In 1948, Project RAND separated from Douglas Aircraft
and became the RAND Corporation, an independent, nonprofit organization dedicated to promoting scientific,
educational, and charitable purposes for the public welfare. See webpage http://rand.org

2The Internet Protocol (IP) was was developed during the 1970s and replaced the ARPANET NCP (Net-
work Control Program) during 1980 - 1983. January 1st. 1983 the ARPANET changed from the NCP to the
TCP/IP protocol suite and since then IP addresses has been the base transport and addressing system used at the
ARPANET/Internet.

1

http://rand.org
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addressing fields of the protocol header. See figure1.1 for a principle IP packet. Every
host connected to the Internet has been assigned an unique IP address at which it can be
contacted and use as sending and receiving address when communicating with other hosts
on the Internet.

When a host wants to communicate with another host connected to the Internet, it writes
the address of the destination host and its own address in the packet header. This header
data stays unchanged when the packet travels from the sending host to the receiving host.

+----------+----------+-------------------+
| src | dest | data |
| addr | addr | content |
| (32 bit) | (32 bit) | (variable length) |
+----------+----------+-------------------+

Figure 1.1: The picture shows a simplified IP packet, with the source address field
(src addr) and the destination address field (dest addr) and the data to be transported
from the source address to the destination address.

An IP address range is assigned to each Internet access interface (Access Interface
to the Internet network) and hosts connected via this line must have assigned an address
within the assigned IP address range of the access interface. Each Internet access interface
is connected to a router. Routers exchange information about which IP address ranges they
have assigned to their interfaces. The routing table inside each router is created from these
informations. The routing tables is used by the router to decide where to send an incoming
packet. The router looks up the destination address in the routing table, and sends the
packet off in the direction that the route table entry is indicating. This process is called
packet routing or in daily speak just routing.

Figure 1.2 shows a packet switched network consisting of a number of packet routers.
Two access lines is depicted, each has been assigned a unique IP address range. At each
access line one host is connected which has been assigned a unique IP address from the
IP address range assigned to the access line. Assigning of addresses is performed by the
network administration of the network, which normally has been assigned a number from
a larger IP address blocks to be used in the network. Typically IP addresses is provided
by the IP network service provider who gets them from the regional office that administers
IP address ranges on behalf of The Internet Assigned Numbers Authority, (IANA)3 . In
Europe the regional office is RIPE and is located in Amsterdam, NL.

1.1 IP packet routing
Routing of IP packets is the task that IP routers perform. When a IP packet arrives at
the router, it looks at the destination IP address of the packet and decides which interface
the packet is forwarded to. Each router plays its part of “the network wide routing task”
where the common goal of all routers is getting each packet from its sending host to its
destination host in the most efficient and direct way. Each router can base its routing
decision on a number of criterias, which all are stored in the routing table of the router.
A number of details that are part of the routing decision are summarized in one parameter
in the routing table normally called cost or metric. In this text we will use the term cost
and we describe the cost parameter and how it is created in more detail in the following
paragraph. The router always selects the most precise route, for a given IP address being
looked up, which means the route to the smallest IP address range, in the routing table,
matching the destination address of the IP packet being routed. If more route candidates
appear then the route candidate with the lowest cost or metric value is chosen.

3IANA is available at http://iana.org.

http://iana.org
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Figure 1.2: Packet switched network. The figure shows a packet switched network
with two hosts connected at either side (left and right host). When the left host commu-
nicates with the right host, it sends the communication divided into packets, one after
the other, addressed to the destination host (here the right host). Each packet travels
from the left host into the network. Each network node (router) has an internal routing
table with routes for any address known to the node, which is used to decide which
direction to send an incoming packet to reach its destination address. In this example
each node in the network looks up the destination address in each packet and sends it
off in the direction that the routing table is indicating, which is in the direction towards
the right host.

1.1.1 What is an IP route

An IP route is a set of data that describes in which direction to send IP packets for the
network range that the IP route is valid for. Routes are stored in the routing table which is
located inside each router in the network. Typically a route can be valid for a contiguous
range of existing IP address ranges located somewhere in the network. Several neighbor
IP address ranges that is physically located close to each other in the network, may share a
route when they can be reached via the same next hop router. In the routing table the route
is represented with an IP address and a subnet mask, exactly like an IP subnet definition.
Here it means that all IP addresses within the IP address range that the route (IP subnet)
describes can be reached by using this route.

The routing table contains all known routes seen from the router where it resides. This
means that the routing table is the routers own view of the network topology of the network
it is part of – seen from its location in the network. The route table is normally located in
memory inside each router, see figure 1.3 for an small example of a route table. The routing
table knows which interface of a router to send a packet out of, and to which IP address the
packet should be sent to, to travel in the direction towards the destination host.

When an IP address is being looked up in the routing table it matches the smallest
IP subnet present in the routing table where the IP address being looked up is within the
address range of the route. To clarify this we give a small example: If the routing table
contains 2 entries 10.0.0.0/164 and 10.200.18.0/24 and the packet that currently
is being processed in the router have a destination address of 10.200.18.18, then both
the routing table entries 10.200.18.0/24 and 10.200.0.0/16 will match but when
looking for the most specific route (i.e. the most specific route, which is the router with the
highest network prefix value) then only the 10.200.18.0/24 will match this criteria,

4Subnet masks have the form: 255.255.0.0 and network prefixes have the /16 form. Network prefixes are
a shorthand version of subnet masks. Subnet masks informs the IP protocol code which bits of an host IP address
is holding the network address and what bits of the IP address that holds the host address at the network. When
subnet masks are written in binary form they contains a number of contiguous one-bits followed by a number
of contiguous zero-bits, in all 32 bits together e.g. 11111111.11111111.00000000.00000000 . The
network prefix is the number of one-bits in the subnet mask. The higher prefix number the smaller subnet (IP
address range), and the more specific are the route being described.
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and the route that is contained in this routing table entry is used for sending the packet off
to the next hop router.

Routing tables consists of all routes known to the router. Each entry in the routing table
consists of the route and the associated network mask that defines the IP subnet range for
which the route is valid for and the interface to send the packets out of to reach the next hop
router or the destination host itself. Each entry in the routing table also contains a cost or
metric parameter. Cost is a typeless numerical value that is attached to each routing table
entry. The cost value sums up all details of each routing table entry into one numerical
value. An example: routes announced via the BGP (Boarder Gateway Protocol) [3] should
have their original cost inserted into the routing table but routes received by the OSPF
(Open Shortest Path First) [4] routing protocol should have their cost value added with the
constant 10. This simple method makes BGP routes take precedence over OSPF routes in
the given router. The cost calculation algorithm is decided by the network administrators
when configuring the routers. The cost value only has local significance to the router. Cost
can be calculated by many different parameters, e.g. link speed or price of the link the route
is using in the next hop direction. Cost doesn’t need to have anything to do with price but
can also be used to select e.g. faster links over slower links. Having different cost values for
the same route table entry, is an often used method to prioritize primary links over backup
links or cheaper IP WAN links over more expensive. Many aspects of cost calculation are
configured by the network administrators and the cost value consists of a combination of
technical and business political aspects

Figure 1.3: An example of a routing table in a traditional router. The route is described
by the Address and the Mask (subnet mask) columns. This is at the same time the IP
address range for which the Next Hop router is the node to route IP packets to, when
routing IP packets with destination address within this IP address range. (matching the
route table entry) The Interface field tells which Interface to send the packet out
of to reach the Next Hop IP address. The Protocol field indicate where the route
originates from i.e staticmeans configured manually by the network administrators.
Age shows how old this route entry are and Metric tells how many hops (number of
intermediate routers) the Next Hop router is away from this router. Metric has the
same function as the cost value described in the text above.

1.1.2 Queues
Routers apply queues at their interfaces. Queues are of the First In - First Out (FIFO)
type. Queues can be applied at the incoming side of an interface (receive queue) or at the
outgoing direction of an interface (transmit queue).

Transmit queues are used to queue packets waiting to be sent out of an interface. An
interface can have one or more transmit queues, if more queues exists the queues connected
to each interface is prioritized among each other, so packets in the highest priority queue is
sent before packets in the next highest prioritized queue and so on. Each time a packet is
to be selected for transmission the queues are scanned from the highest priority queue and
towards the lowest priority queue, the first queue with a packet ready for transmission is
selected and the first packet in the queue is picked.
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Receiving queues located between the interfaces and the packet routing process, are
used to queue packets waiting to be routed and if we use different traffic priorities queues
are used to sort incoming packets in different priorities. Each queue has an assigned priority
to it. Each time a new packet is to be routed, the routing process takes the first packet from
the highest priority queue at the receiving interface and processes it. The result is that high
priority packets are being routed before lower priority packets.

1.2 Virtual Private Networks

Newer types of routers are able to handle Virtual Private Networks (VPN) which is logical
closed networks that is used within e.g. companies to connect different physical sites in
a closed network. VPN networks also need routers to perform the packet routing for the
packets traversing them. This can be done by individual routers but is often done by Vir-
tual router instances of the same routers that routes the Internet within an administrative
domain. An administrative domain is a group of routers administered together, e.g. an
ISP (Internet Service Provider) or company network. VPN routers are normally deployed
within an administrative domain and VPN peering between administrative domains is done
by agreement between different administration networks – if at all.

Each packet entering a VPN router have to be identified to belong to either the Internet
or to a specific VPN. This is often done with a label inserted in front of the IP header (OSI
layer 35 e.g. MPLS (Multi Protocol Label Switching) but it can be done in various ways
e.g. at layer 2 where VLAN (Virtual Local Area Network) is a possible method.

In the following section we will look more into the aspects of VPN networks and the
technologies used to implement these.

1.3 IP domains

IP domain or IP realm are two words we use indistinguishably to describe an IP world6

Two different IP domains are two total independently IP worlds that doesn’t share anything
between them, and that doesn’t know the existence of the other part. Routers that are able
to handle more IP domains or IP realms are able to distinguish an IP address in one IP
domain from the IP address with the same numerical value in the other IP domain. Routers
with the ability to handle addresses in more IP domains makes the router able to perform
routing in more IP domains, as it can distinguish the IP addresses that enters the router
from one IP domain from the IP addresses that enters the router from another IP domain.
IP packets from different IP domains normally enters via different channels or interfaces,
or by other means are marked so the router knows to what IP domain each packet belongs
to. This is what we during this project calls a Virtual Router.

When networks are created by virtualized routers the routers must have the ability to
distinguish each network from the other networks handled. Figure 1.4 shows this with an
example of 3 customer networks handled by virtualized routers.

5Network protocols are divided divided into layers. ISO International Standards Organization) have defined
the OSI (Open Systems Interconnect) 7 layered network protocol model that is a framework for understanding,
describing and developing network protocols. Layer 1 is the lowest layer and closest to transmission interface
and layer 7 is the highest layer is the Application layer that provides services directly to user applications. See
appendix A for a short description of the OSI model.

6An IP world, IP domain or IP realm is an independent IP address space, no addresses are used before the
administrators place them into the IP domain. IP domains can be used to several things, separation of networks,
test networks, VPN networks etc. Often IP domains have some sort of connection with the Real IP world (the
Internet address space) maybe through a firewall or similar security device, controlling access to and from the IP
world. Traffic that flows into an IP world must be able to see some part of the Internet address space (i.e. via
routing or (Network Address Translation (NAT) [5] to be able to address hosts in the other IP domain. The uses
of these features are widely deployed.
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Figure 1.4: 3 customer networks are handled by one physical router with 3 virtual
routing instances. Each customer network uses exact the same IP address range which
are complete separated from each other when in transport from the left location of the
customer to the right location of the same customer. The network cloud between the
two routers is operating as a Multi Protocol Label Switch (MPLS) network which en-
ables separation between virtual private networks (VPN) during transport in the MPLS
cloud. Picture done by: Shafagh Zandi [6]

Routers in each IP domain must communicate with other routers in the same IP domain.
When a router capable of running virtual routing instances is designed, the separation has
to be created so each instances only handles its dedicated network. This can be designed in
many ways, but if we look at the task at a functional level two main properties is obvious:
Separation at the IP packet forwarding level and at the routing process / routing table level.
At the IP packet forwarding level the separation is about isolation of the individual IP
packets from different IP domains. At the routing table level the task is to be able to handle
more route tables typically one for each virtual router instance in the box.

There are many ways to implement this. During this project we will look through
the existing XORP project code base and search for the optimal way to implement virtual
routers in the existing XORP project, and with help from features provided by the new
virtual network environment in FreeBSD 8-Rel.

1.3.1 MPLS - Multi Protocol Label Switching
Multi Protocol Label Switching [7] (MPLS) is a technique that makes it easy to create
virtual links between nodes in the same network. MPLS is protocol independent and packet
forwarding is based alone on the label attached to the beginning of each packet. Labels are
attached to each packet at the first node, where data packets enters the MPLS network and
are popped of when the packet leaves the last MPLS node in the network. Before and after
the MPLS part of the network, normal IP address based routing is used.

With packet forwarding decisions solely based on the contents of the attached label,
(and the rest of the data packet is not needed to be analyzed for routing purposes) makes
it easy to create virtual end-to-end circuits for any type of protocols. MPLS network is an
overlay network, which means that a new level of network or network layer is introduced
in the router. MPLS is existing at the upper half part of layer 2 of the OSI protocol stack,
just below layer 3 and is sometimes referred to as a layer 2,5 protocol.

MPLS also has its force in its ability to transport any protocol over a variety of un-
derlaying transport systems and protocols, it supports variable length packets size and not
having the large overhead of the small cell size of ATM7 networks.

7ATM networks is a layer 2 transport network with a fixed packet size of 58 byte, compared to Ethernet that
has a packet size of around 1500 bytes.
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We will go into further details of MPLS later in this report, mainly with the specific
aim of presenting a suggestion of the MPLS protocol into the XORP virtual router project.

1.3.2 VRF - Virtual Routing and Forwarding

Virtual Routing and Forwarding (VRF) [8] is a technology that allows multiple instances of
a routing table to coexist within the same router. Because the routing instances are separate,
overlapping IP addresses can be used without conflicting.

VRF is a key functionality in creating IP Virtual Private Networks (IPVPN) where the
VRF function handles the routing function of each VPN instance. The VRF is a local (to the
router) entity, creating IPVPNs over distant network nodes the separation of IPVPN traffic
from each other during transport, has to be provided by other technologies e.g. MPLS.

1.4 Virtualized IP routers today and in the future.

With the increasing number of IP Virtual Private Networks (VPN) in e.g. Multi Protocol
Label Switching (MPLS) networks being offered by IP service providers – the number of
routers needed to route the traffic in each network is growing quickly.

When looking at the available routers they are quickly diverted into two main groups:
Routers that support Virtual Routing and Forwarding function (VRF) and routers that does
not. VRF functionality is a technology that allows multiple virtual instances of a router to
exist within the same physical router at the same time. This way a single router contains
multiple VRFs typically one for each virtualized IP network.

Figure 1.5: When networks are virtualized one router per physical location can han-
dle all the networks in virtual instances. The network separation is maintained as if
it is individual routers. The upper picture shows 3 private company networks created
with dedicated hardware for each network. The lower picture shows the same 3 pri-
vate company networks being created or serviced by virtualized routers. The network
functionality in both networks are the same, but with shared hardware.

When looking deeper into the topic it is quickly observed that the group of routers
that supports virtual routing functions only contains members from major router vendors
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like Cisco8, Extreme Networks9 and Juniper Networks10, and the group of routers without
support for VRF functionality is containing a large number of commercial routers including
the open source based routers available. This has been the situation at the router scene until
now.

One of the first aspects to notice when evaluating the reasons behind this is that a
suitable Open Source IP stack is not available. The problem with the general available
Open Source IP subsystems are that they do not have support for multiple IP domains (or
IP realms) which is a basic requirement for virtual routing functions. In the following
paragraphs we will summarize the requirements for a single virtual router instance and for
multiple virtual router instances.

Routers that supports multiple VRFs are able to emulate multiple router instances in
the same box and hereby enables the hardware to perform routing functions for multiple IP
networks simultaneously.

The most important functions of a single virtual router instance are: 1) A routing ta-
ble which keeps track of which direction to send IP packets so they reach their intended
destination. 2) The support for one or more routing protocols that can exchange route
information with peer routers in the (private) network. 3) Handle virtual and/or physical
interfaces that connects the router to the (private) IP network. 4) The Ability to route IP
packets between its interfaces according to the routing table.

When we add VRFs into the same hardware a few extra requirements for the system
appears: 4) The ability to handle IP addresses from/between different IP realms. 5) Ability
to connect different IP domains to their appropriate networks. 6) Having a separate rout-
ing table for each virtual routing instance (IP domain). 7) The ability to handle routing
protocols within each IP domain that exchange route information with peer routers.

Recently support for multiple IP stacks has been proposed for the FreeBSD operating
system which then removes one of the obstacles toward the realization of an open source
based router that has support for multiple router functions. The proposed change imple-
ments support for virtual kernel instances (including network environment)called Virtual
Images is suggested by Marko Zec, a networking researcher from University of Zagreb,
Croatia, and is now generally available in FreeBSD 8-Rel. This sets the scene from where
our project starts.

1.5 Method chosen

We will analyze the conformability between the requirements for the proposed virtualized
XORP architecture and the capabilities provided by the Virtual Images system in FreeBSD.
We will apply a number of measurement methods to quantify the conformability. The
methods we will use are: 1) Count the number of extra functions needed to glue the two
architectures together. 2). Count the number of needed functionality needed by XORP to
handle virtual instances. 3). Count the number of needed workarounds to the FreeBSD
Images to be able to handle XORP in a virtualized setup. 4). Other relevant quantitative
measurements that express the missing parts needed to make XORP virtualization with
FreeBSD Images.

As we are not implementing the project these measurements will be on a higher ab-
straction level and we are aware of the risk of this is an method that may give an imprecise
result, and that a quantitative approach will still be based on a higher level abstraction level

8Cisco is the old IP router company, from the beginning IP routing was their core business. Today Cisco are the
largest company in the IP routing and switching market. See more at the Cisco homepage http://cisco.com

9Extreme Networks is a newer fast growing IP routing and switching company with products for the IP core
network, The Data center and service provider market segments. http://extremenetworks.com

10Juniper Networks is a newer fast growing company challenging Cisco at its core IP network marked segment,
but are also operating in the Switching and Firewalls area. See Juniper Networks home page: http://www.
juniper.net

http://cisco.com
http://extremenetworks.com
http://www.juniper.net
http://www.juniper.net
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than C++ functions and counts of lines of C++ code. But we still believe we can get some
qualitative results in this way.

1.6 Motivation
Today open source routers has no support for virtual instances, which is one of the obstacles
that has to be passed before open source based routers will have a realistic position in
modern IP backbone core networks. We would like to use our project work to help with
passing this obstacle, which is the main reason to choose exactly this topic as our project.
Besides this we have a deep interest in IP networks and IP routing, which of cause also is
an important reason. Within the time frame available it is not possible also to implement
the project as a demonstration project.

Today open source routers has most of the needed functionality required in IP backbone
core networks except support for virtual instances and to some extent physical interface
types, but this is mostly a hardware and a capacity issue of standard PC hardware, but also
to some extent an open source driver (or access to hardware specifications) issue, where
support for virtual routing instances is solely a software issue.

1.7 Thesis
Today XORP only supports a single router instance which means it only supports one
routing table and one IP network domain (IP realm). We want XORP to have support
for virtual routing instances and will examine how well the proposed virtual images for
FreeBSD supports the requirements of a virtualized XORP architecture. The result of this
work is hoped to be useful for implementing virtual routing instances in XORP at a later
point in time.

We will create a proposal for an XORP architecture that supports virtualized routing
functions and is based on the FreeBSD Release 8, Virtual images for the FreeBSD system
and analyze how well the two fits together. This work can be viewed as (or will bee) both
an analysis of the FreeBSD virtual network environment support for routers such as XORP
with multiple IP domain support, and as a planning phase for extending the XORP project
architecture to support multiple routing instances and multiple independent IP network
domains (realms).

1.8 Approach
We intend to analyze the facilities provided by Marko Zecs virtualized IP subsystem for
FreeBSD (called virtual network environment) and create a proposal for how XORP can
get support for virtualized routing instances. In the end we will analyze how well these
thing fits together. One of the methods we would use in the evaluation of the conformability
is to analyze the set of extra functionality and functions necessary to get these two systems
to work together, and analyze what type of functionality these functions has.

1.9 Proposal of a solution
The immediate proposal of a solution is to make use of the high modularity that the XORP
project already have in its non virtualized form. All components are separate UNIX pro-
cesses with a suitable XORP interface called eXternal Resource Locators (XRL) for com-
municating with other XORP modules. A firsthand solution is to place each IP domain (IP
realm) in separate FreeBSD virtual network environment, and startup the necessary XORP
processes according to the XORP configuration for the IP realm. We anticipate that the
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master instance of the XORP Router Manager Process rtrmgr creates and configures vir-
tual images and establishes proper networking setup in each Virtual image according to its
configuration file at startup.

Quite some analysis work and design considerations has to be done before choosing
the way the XORP Router manager process (rtrmgr) communicates with XORP processes
in other virtual images. XORP uses eXternal Resource Locators (XRL) for this today, but
there is currently no existing IPC channels between Virtual images. Here we can suggest
implementing support for UNIX domain pipes or named FIFOs with an endpoint in each
virtual images. XRL communication is in principle a full duplex communication, like
a remote procedure call (RPC). A XRL function call is made to a XORP module with
parameters supplied, and parameters are either returned immediately or asynchronously
at a later time via a call back event from the called function. As a first impression it
seems that every module that has the possibility to communicate with each other via a
seemingly direct channel between the modules. It is currently not obvious to what extent
these needs to be between sibling or parent-child virtual images. If XRL communication
only will be between parent and child virtual images we do not foresee major problems
with implementing this. Extra IPC functionality between Virtual images might be needed
to achieve full feature functionality in a virtualized version of XORP.

1.10 Description of work done
During the project we have done the following work:

• Described and analyzed (evaluated) the virtual network environment extensions to
FreeBSD, suggested by Marko Zec and implemented in FreeBSD 8-Release.

• Described and evaluated the current XORP project with regards to adding support
for virtual images and support for more than one IP realm (IP domain).

• Proposed changes to the XORP architecture design to support virtual routing in-
stances.

• Proposed changes in the XORP configuration language to support configuration of
the virtualized version.

• Evaluated the usability (conformability) between our suggested virtualized XORP
architecture and the virtual network environment implementation of FreeBSD.

1.11 Evaluation method
The evaluation method we plan to use is based of the evaluation of how much extra func-
tionality that needs to be added to the implementation for the two systems to fit together
(or work together). We can use this evaluation technique on several issues (items):

• Counting/evaluate the number of functions needed.

• Counting/evaluate the number of topics/areas where “glue code” is needed.

• Counting/evaluate the line of code needed in every topic/area, and use this as an
expression for the misfit.

• Finally suggest which improvements we can suggest or implement at the virtual net-
work environment system to remove some of the identified obstacles.
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1.12 Expected results
We expect to be able to validate that there is good conformability between the FreeBSD
virtual network environment system and the proposed virtualized architecture for XORP.

1.13 Conclusion
After having analyzed the network properties of virtual images, designed a virtualized
XORP architecture and evaluated the conformability of the two, we can conclude that there
is a conformability with a grade between good and perfect, on a line from poor to perfect.

The area of least support is Inter Process Communication (IPC) features between XORP
processes residing in different virtual images of FreeBSD.

See the full conclusion in chapter 7.
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Chapter 2

The FreeBSD virtual network
stack

The virtualizing of the FreeBSD kernel started with the jail concept described by Poul-
Henning Kamp and Robert Watson in the paper: ”Confining the omnipotent root” [9] con-
cept in FreeBSD 4-release marts 2000. Jails was originally a user process environment
virtualization.

A few years later Marco Zec wrote a paper ”Implementing a cloneable Network Stack
in the FreeBSD Kernel” [10] that discussed the remaining parts of FreeBSD system that
still needed to be virtualized. This paper started the process of virtualizing the rest of the
FreeBSD kernel.

Figure 2.1: Operating system partitioned into virtual images (jails). 3 virtual images
exists in the kernel. User processes executing inside these can create a network socket
to the network subsystem of the virtual image. Communication between virtual images
is via network connections e.g. bridges implemented by the Netgraph [11] system.
Virtual images can either connect directly to a NIC or to a virtual interface e.g. bridging
interface. The figure is from Marco Zecs paper “Implementing a Cloneable Network
Stack in the FreeBSD Kernel” [10]

13
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The first step in virtualizing the FreeBSD system was taken in marts 2000, with FreeBSD
4-Release, which contained the jail(2) FreeBSD system call implementation. With jails
processes could be isolated in separate containers called jails. Jails provided a virtualized
process environment abstraction to the user space, enabling virtualization of the user space
environment. This enabled virtualization of the environment for applications running in
user space as long as no special kernel abstraction except the IP address, a process tables
and a few other kernel administrative objects is needed. At this stage the rest of the kernel
did not support virtualization.

Around 2003 the virtualization of the kernel and kernel subsystems came up as a task
in the FreeBSD project. To begin with Marco Zec worked on a separate project named
Virtual (kernel) Image (VIMAGE), that should demonstrate the concept. In 2008, when
the virtualization project was about to be implemented into the FreeBSD project, the VIM-
AGE project was divided up into two smaller projects, virtualization of the network stack
named VNET and virtualization of the kernel subsystems named IMAGE. The VNET task
is concerned about providing a virtualized network stack (Ethernet, IP, TCP, ...) and the
IMAGE task is concerned about virtualizing all other parts of the kernel (kernel globals,
Management Information Base options (MIB), subsystems, etc.)

Implementation of the virtualized kernel subsystem and network stack added virtual-
ization of the process and network environment to the FreeBSD system. First the virtual
network stack (VNET) was established and then the virtualization of the kernel subsystems
(IMAGE) was implemented, both appeared in the FreeBSD 8-Release in January 2010.

Figure 2.1 above shows a virtualized FreeBSD kernel with VIMAGE functionality. The
figure is divided up into a kernel space (the grey shaded area) and the user space area (the
light grey shaded area). The boundaries of the virtual kernel images are drawn with broken
lines. Each virtual kernel image is like an object instantiation in C++ where each instance
have a local dataset for the variables and shares the program code between them. The
white boxes marked “User process” shows the virtualized user space where applications
are executed. The lowest part of the gray area of the figure, shows how the virtual kernel
instances can be connected to the outside world via various network options, e.g. bridges.

Between jails, processes are able to communicate network wise via Unix domain sock-
ets in shared file system space, or via external (or virtualized) networking infrastructure.

Figure 2.1 illustrates the concept of Virtual images (jails) and the separation of the net-
work stack. Each virtual image is completely transparent to user land programs compared
to a non virtualized version of the FreeBSD kernel, as all the functionality of the kernel
virtualization (virtual images) is hidden in the kernel. The Virtual Images system has as a
design goal that ensures that ”user land” binary programs can be moved from a non virtual-
ized FreeBSD kernel into a virtualized version without recompilation. This implicates that
the system call interface to the kernel is unaltered when implementing the virtualization
code. An administration tool named jail(8) controls and administers the creation and
deletion of virtual images, including their network interfaces and startup of processes inside
virtual images through a new system call created for this. Seen from the outside network
and process environment view, each virtual image appears as an independent system how-
ever resources such as RAM, disks and other I/O hardware is shared between the virtual
instances as in a traditionally single image UNIX operating system. This ensures a better
resource utilization but has the disadvantage compared to e.g. IBM-VM that it is not pos-
sible to run different flavors of Operating Systems inside virtual images. It is only possible
to run the same version as the kernel itself, as it is the kernel that is being virtualized.

2.1 The FreeBSD 8-Release
The FreeBSD 8-Release implementation, is the first production release of the FreeBSD
system with extended jail virtualization. (jail + VNET + IMAGE). The new virtual kernel
features are not fully production quality yet. The most important issues are the destruc-
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tion of virtual kernel elements (object destructor’s etc.). This release provides a set of
building blocks that can be used to create the environment needed for almost any given
purpose. Building blocks are jails, virtual network stacks, routing tables, network elements
e.g. Ethernet interface pairs, virtual bridges etc. The use of these building blocks enables
the administrator to create virtualized process environments, with or without a dedicated
network stack and routing table. From this release of FreeBSD a virtual kernel instance is
a jail with an optional independent network stack instance.

The kernel can handle a high number1 of virtualized network stacks, which can be
attached to or shared by one or more jails. This means that individual IP stacks can be
chosen per jail. Every process, socket and network interface present in the system are
always attached to one, and only one, virtual network stack instance (VNET).

In this project we will use the terms jail and virtual network environment as a general
term when we speaks of the virtualized kernel (IMAGE + VNET) as a whole, and the VNET
and IMAGE terms when referring specific to either of these sub entities.

2.2 Properties of jails.
Jails have 2 major variants: A user land virtualization only, just like an original jail and a
user land plus kernel virtualization version. The user land only virtualization is useful for
running applications in virtual hosts, and the user land with kernel virtualization is useful
when the requirements specifies network separation, different routing options, individual
firewalls, tunneling, TCP/IP options tweaking etc.

The operation and management of the new functionality is done with parameters added
to the jail(8) command. The binding of interfaces functionality is integrated into the
ifconfig(8) utility. The setfib(8) command controls what routing table processes
in a jail or a set of jails, will be associated with. A small number of additional utilities sup-
ports the jails, among these are: pgrep(1) which searches and lists processes at the sys-
tem or in a jail. jexec(8) which executes a command inside a jail. jls(8) which lists
existing jails, epair(4) which creates a pair of virtual Ethernet interfaces with a cross-
over cable between them. The if bridge(4) is an Ethernet bridge device that bridges
Ethernet connections together inside the kernel, just like a hardware Ethernet Bridge, and
the netgraph(4) [11] subsystem, is a collection of network element building blocks that
can be combined into more complex setups.

In FreeBSD 8-Release, the IMAGE and VNET functionality is accessed via extensions
to the jail(8) command. Jails can be created with various level of virtualized support.
The existence of the vnet keyword on the jail(8) command line decides whether a
jail gets an individual network stack instance or shares the network stack with the creating
process of the new jail.

Almost every knob and bolt of the virtual kernel instance can be tweaked via the
sysctl(8) MIB interface.

The user land virtualization provides a simulated virtual machine based on an abstrac-
tion made primarily at the syscall(2) interface. The user land application runs in a
protected environment from other user land processes, and is only offered a simple kernel
virtualization with own IPv4/6 IP address for binding sockets, a hostname and a few other
properties.

Jails with user land only virtualization2 shares the following properties:

• Applications that runs inside the virtualized process environment are unable to touch
anything outside the jail. Individual jails protects its applications from reaching out

1The jail virtualization is a cheap (resource wise) way of virtualizing, the intent is that thousands of virtual
hosts can exists within a normal server-grade hardware.

2User land only jails are jails without a virtualized IP network stack instance. The vnet keyword was not
given in the creating jail (2) command.
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into the host OS jails (from child to parent), or into other sibling jails. Jails each has a
separate set of Process Control Blocks (PCB)3 used by the kernel (jail) to administer
and group processes that runs inside the jail.

• Jails have a file system subtree associated, which the root user of the jail can manage
with its root privileges. This directory tree are defined at jail-creation time, either
as a shared directory tree among several jails or given as a dedicated file system sub
tree for each jail to have its own dedicated sub tree. This starting directory of the sub
tree is the root directory of the jail its attached to. The directory tree must have the
usual UNIX file system disk layout with files existing needed by applications to be
run within the jail e.g. shared objects, start up command scrips, password and group
files etc. Just like the base OS is needing its file system – so does every jail. The
configuration requirement for a jail specifies whether a file sub tree can be shared
or not. The applications that runs inside a jail make use of these files. All known
normal user and group rights are maintained inside the jail according to the standard
/etc/passwd(5) and /etc/group(5) in the file system sub tree assigned to
the jail.

• Jails can have a number of IPv4 or IPv6 IP addresses for binding network interfaces,
the first IP address of the supplied IP address list in each family is the primary IP
address of that family for this jail, and is used as source address of connections to
and from the loopback address (127.0.0.1 for IPv4 and ::1 for IPv6) will be changed
to be to or from the primary address of the jail for the given address family. Jails can
either inherit the IP addresses of the host system, or be given a list of IP addresses
that can be used by the jail.

• Jails can be allowed to create child jails. The number of descendant of this jail can
be restricted by the children.max parameter. Parent jails can access the child
jails, as they are the creator of these. Parent jails can start and stop processes inside
child jails, change the parameters of child jails and even remove child jails from the
system.

• Jails are identified by a unique Jail-ID jid and may have a name set by the creator,
which can be used at the same places as the jid can be used in commands managing
jails.

• The persist keyword at the creating jail command, enables the jail to exist even
without any processes running inside it. If no persist keyword was given when
creating the jail the jails exits or remove itself when the last process in the jail has
terminated.

• Jails can be restricted to run on a limited or dedicated cpuset on a multicore system.

• Option cpu.max controls each jails use of CPU resources. Jails can be allocated
a maximum allowed percentage of the total CPU time to protect the system from
runaway processes starving other processes for CPU resources.

Jails created with the vnet keyword have in addition to the features listed above for
user land virtualization jails, their own virtual instance of the kernel subsystems and share
these additional virtualized properties. Local copies of: global kernel variables, callout
timers, event handlers, dedicated sysctl(3) MIBs, handling of startup and shutdown of
each jail and debugging support.

Instances of the virtual network stack (jails with the vnet keyword can be shared
between several jails. Each network stack instance have a local copy of the following
properties: loopback interface (IPv4: 127.0.0.1 and IPv6: ::1), virtual interface of the

3The Process Control Block (PCB) is a kernel data structure that holds pointers to processes inside each jail.
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netgraph(4) subsystem for access to the network stack, Hardware resources (e.g. NIC
cards) can be dedicated to a specific virtual network stack, own statistics (counters etc.),
own firewalls, IPsec, raw sockets, routing tables, routing sockets, IPv4 and IPv6 udp, tcp
and sctp subsystem properties and counters, traffic shapers, IpSec module, Ipfw firewall
module, netgraph nodes, divert sockets, interfaces (real and virtual). The aim is to instanti-
ate the complete network stack enabling the complete virtualization of the kernel including
network stack and all network subsystems.

Generally the whole virtualization concept of FreeBSD is created with a high level of
modularity and granularity, so only the parts that really needs to be virtualized in at given
application configuration are virtualized and the parts that doesn’t need to be virtualized can
be left unvirtualized. This way the usage of resources are optimized and the virtualization
overhead of the full system is minimized.

2.3 Way of operation

When a FreeBSD system with jails is booted only the default jail is existing. System
administrators can dynamically create jails and associate real or pseudo network interfaces
and execute user processes in the virtual environments. User processes executing in a
jail will be able to interact only with their own network stack instance. Jails are logically
organized in a hierarchical tree structure. When a jail creates a new jail it becomes a “child”
instance (similar to UNIX processes, or file system directories). Parent jails are allowed to
spawn a new process into its child jails e.g. for starting up the programs to be executed or
for pure management purposes. The child jail processes are prohibited from manipulating
its parent and sibling jails.

Despite the isolation between the jails are an overall design idea it is necessary that jails
should be able to communicate if desired by the administrator. This can be done through
either bridged Ethernet interfaces or through virtual point-to-point channels constructed via
the netgraph(4) (see the netgraph project [11]) framework or via epair(4) Ethernet
devices. It has to be analyzed to what extent shared memory or other IPC (Inter Process
Communication) methods can be used for this too.

2.4 Virtual Network Stack examples.

To illustrate the use of jails we have created a simple example shown in figure 2.2 with two
virtual hosts connected by a cross-over Ethernet cable, implemented with a epair(4)
device. IPv4 and IPv6 ping packets is sent from host “left” to host “right” and ping replies
are received back at host “left”. The command script that generates the setup with FreeBSD
jails and the output from the ping test is shown in figure 2.3.

------------ ------------
| |192.0.2.1/30 192.9.2.2/30| |
| host left |--------------------------------| host right |
| sends ping |2001:db8::1/64 2001:db8::2/54| |
------------ ------------

[ping req] -->
<-- [ping reply]

Figure 2.2: The setup consisting of 2 hosts (left and right) each with own dedicated
network stack instance. Each host are assigned an IPv4 and an IPv6 IP-address enabling
communication over both protocols.
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001: # Start left and right jails.
002: ljid=‘jail -i -c -n left host.hostname=left.ping.net vnet persist‘
003: rjid=‘jail -i -c -n right host.hostname=right.ping.net vnet persist‘
004:
005: #Create epairs and connect to jails
006: ep=‘ifconfig epair create‘
007: lmep=‘expr ${ep} : ’\(.*\).’‘ # remove last char of epair dev name
008: ifconfig ${lmep}a vnet ${ljid}
009: ifconfig ${lmep}b vnet ${rjid}
010:
011: # left ljid
012: jexec ${ljid} ifconfig ${lmep}a inet 192.0.2.1/30 up
013: jexec ${ljid} ifconfig ${lmep}a inet6 2001:db8::1/64 alias
014:
015: # right rjid
016: jexec ${rjid} ifconfig ${lmep}b inet 192.0.2.2/30 up
017: jexec ${rjid} ifconfig ${lmep}b inet6 2001:db8::2/64 alias
018:
019: # ping
020: jexec ${ljid} ping -c 5 192.0.2.2
021: jexec ${ljid} ping6 -c 5 2001:db8::2
022:
023: Output from program line 1-21.
024: PING 192.0.2.2 (192.0.2.2): 56 data bytes
025: 64 bytes from 192.0.2.2: icmp_seq=0 ttl=64 time=0.069 ms
026: 64 bytes from 192.0.2.2: icmp_seq=1 ttl=64 time=0.041 ms
027: (3 lines removed here)
028:
029: --- 192.0.2.2 ping statistics ---
030: 5 packets transmitted, 5 packets received, 0.0% packet loss
031: round-trip min/avg/max/stddev = 0.028/0.044/0.069/0.014 ms
032:
033:
034: PING6(56=40+8+8 bytes) 2001:db8::1 --> 2001:db8::2
035: 16 bytes from 2001:db8::2, icmp_seq=0 hlim=64 time=0.137 ms
036: 16 bytes from 2001:db8::2, icmp_seq=1 hlim=64 time=0.086 ms
037: (3 lines removed here)
038:
039: --- 2001:db8::2 ping6 statistics ---
040: 5 packets transmitted, 5 packets received, 0.0% packet loss
041: round-trip min/avg/max/std-dev = 0.078/0.093/0.137/0.022 ms

Figure 2.3: The example creates 2 jails with own dedicated network stack instance
in line 2-3, connects these with a cross over Ethernet cable (lines 6-9). Configures an
IPv4 and IPv6 network in each jail (line 12-13 and 14-15). Sends IPv4 and IPv6 ping
commands test the connectivity (lines: 20-21). Output from ping commands showing
packets are sent from host one to host two and reply packets returns back to host one
(lines: 24-41).
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2.5 Summary
In this introduction to the FreeBSD virtual network stack (jails) we have provided a small
overview of the dynamics and possibilities in the design of FreeBSD virtualization setup.

Beginning with jails supporting application hosting in virtual kernel instances that
mainly provides application level separation, to the introduction of the full kernel virtu-
alization. The full kernel virtualization features either separate or shared network stack
instances and separate or shared routing table instances. Virtual kernel instances features
almost any feature of the FreeBSD kernel to be tweaked and manipulated to fit the needs
of the task to be solved.

Modularity has been an important part of this project, as various application uses have
very different requirements of what parts of the system needs to be virtualized. The ability
to only use resources for virtualizing the needed parts of the system for a given application
use, saves resources and optimizes the uses of the hardware the system operates on.

The goal for the FreeBSD kernel virtualization project is that thousands of virtual hosts
can be running at a normal server grade hardware platform.

The FreeBSD project names the virtual kernel instance for IMAGE and the virtual
network stack for VNET, we will use the term virtual network environment for both parts
combined throughout this report or when we in general refers to the virtual kernel features.

This concludes our introduction to the FreeBSD virtual network stack and analyzing
the features it provides.
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Chapter 3

Introduction the XORP project

The test in this chapter is an updated and scaled down version from master thesis project
from January 2008 [5].

This chapter introduces the eXtensible Open Router Platform (xorp) to the reader unfa-
miliar with the xorp project and the overall design of xorp. We provide a short introduction
to the xorp project goals and to each of the modules which is a part of xorp. We present
a short overview of the XORP top-level configuration clauses as we are using these in the
redesign of the configuration language for the XORP virtual router support.

This chapter is inspired by the xorp document “Xorp Design Overview” [12] and the
“Xorp Software status page” [13].

3.1 Xorp overview
The xorp homepage1 says it like this:

“Xorp is the eXtensible Open Router Platform. Our goal is to develop an open
source software router platform that is stable and fully featured enough for
production use, and flexible and extensible enough to enable network research.
Currently xorp implements routing protocols for IPv4 and IPv6 and a unified
means to configure them. In future, we would also like to support custom
hardware and software forwarding architectures.”

Xorp has been around since January 2003, where version 0.1 was released, the xorp
project has on a regular basis released versions with enhanced functionality. Today (July
2010), we have release 1.6 of xorp. Xorp have a good overall design documentation which
will be referenced throughout this report, but to introduce the reader to the overall design
of xorp we have included a (not so) short introduction to the xorp design and modules.

Xorp is running on top of a host operating system (Host OS), which natively is FreeBSD
but Linux (more distributions), Mac OS X and even MS Windows 2003 Server are current
possible host operating systems. Some xorp features might not yet be implemented at some
of the host OS’es.

Generally xorp has modularity as the overall design concept. Every module of the
router is a separate Unix process at the host operating system. To facilitate future hard-
ware with more processors or dedicated packet forwarding subsystems all communication
between xorp modules is done via a unified communication system that facilitates modules
can be executed at different hardware which are connected with some kind of communica-
tion path e.g. an IP network, or a high-speed internal backplane bus between the individual
processors. In xorp communication between modules is done with eXternal Resource Lo-
cators (XRL).

1http://www.xorp.org
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XRLs looks much like URLs known from the World Wide Web. Figure 3.1 shows a
example of an XRL and explains the various parts. The Protocol Family, the Interface
specification and the arguments.

finder://fea/fti/0.1/add_route?net:ipv4net=10.0.0.1/8&gateway:ipv4=192.150.187.1
+----- +-- +-- +-- +-------- +------------------------------------------------
| | | | | | ======= ==== =============
| | | | Method Arguments ˆ ˆ ˆ
| | | | Parameter name -| | |
| | | Interface version | |
| | | Parameter type --------| |
| | Interface Name |
| | Parameter value -----------------|
| Protocol Parameters
|
Protocol Family

Figure 3.1: Example of an xorp external Resource Locater (XRL). The figure define the various
parts of an XRL. Arguments starts with the question mark “?” character and are separated with the
ampersand character “&”. The base example is from the Xorp Inter-Process Communication Library
Overview document [14].

Xorp is deliberately not a multi-threaded architecture which reduces the design require-
ments and complexity of the individual xorp modules and eliminates the limits that a multi-
threaded architecture adds to the programming rules.

3.2 Xorp modules

Xorp consists of a number of modules. Every xorp module is implemented as a separate
operating system (Unix) process. Throughout this chapter we use the term module but
process would have been an equal correct term to use here. The modules are divided into
3 main groups: Management modules, Unicast modules, Multicast modules and the few
modules that don’t fit into these classes are grouped under the “Other modules” group. The
individual xorp modules/processes are depicted in figure 3.2 and described in the remaining
parts of this section:

Figure 3.2: Xorp processes overview. The figure is from the xorp Design Overview document [12].
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Management modules

Inter-Process Communication (IPC) Finder

The IPC finder is needed by the XRL communication method used among all xorp com-
ponents. Each of the xorp components registers with the IPC finder. The finder assists the
XRL communications by knowing the location of each XRL target, therefore a xorp process
does not need to know explicitly the location of all other process, or how to communicate
with them. The router manager process (rtrmgr) incorporates a finder, so a separate finder
process is only needed if the rtrmgr is not being used such as during testing. For more
information about the IPC finder and XRLs see these xorp documents: “Xorp Inter-Process
Communication Library” [14] and “Xorp XRL Interfaces: Specification and tools” [15].

Xorp Router Manager (rtrmgr)

The rtrmgr is the xorp process responsible for starting all components of the router, to
configure each of them, and to monitor and restart any failing process. It also provides the
interface for the CLI to change the router configuration. For more information about the
rtrmgr see “Xorp Router Manager Process” [16].

Command Line Interface (CLI) xorpsh

The CLI can be used by a user to access the router, view its internal state, or to configure
it on-the-fly. Its functionality is closely related to the rtrmgr. However, because the ro-
bustness of the rtrmgr itself is extremely important, all functionality that can be run as a
separate CLI process are separated from the rtrmgr. The process implementing this CLI
functionality is called xorpsh. For more information about the CLI and the xorpsh process
see “Xorp User Manual” [17].

Simple Network Management Process (SNMP) module

This is the SNMP management process of Xorp. It is used for SNMP access to the router.
For Example, it can be used to translate SNMP requests into XRL requests. Internally,
SNMP will communicate with the other processes using XRLs. For more information
about the Xorp SNMP module see the document ”Xorp SNMP Agent” [18].

Routing Policy module (Policy) module

This is the Xorp routing policies coordination process2 The policy module basically works
by checking the routes or other data that are policed by the module ensuring that the global
policies are respected. As an example: if import of routes from OSPF into BGP are policed
by the module, each of the involved modules can ask if a given route is blocked or allowed
by the current policy. The policy module interacts with all routing protocols and the Rout-
ing Information Base (RIB) and instructs them how to handle the routes flowing to or from
the system, export rules from one protocol to another, modify or remove routes as they flow
through the system, etc. Currently only unicast policies are supported by the policy module.
Policy is a newly added feature of xorp and the number of modules that implements policy
functions is growing as this is currently being implemented. For more information about
the xorp policy module see the paper: “Decoupling Policy from Protocols: Implementation
Issues in Extensible IP Router Software” [19].

2The Routing Policies module is not shown on the figure 3.2.
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Unicast routing modules

Border Gateway Protocol version 4+ (BGP4+) module
This is the BGP routing daemon. It implements IPv4 and IPv6 unicast routing in a single
process, as well as Multicast BGP4 (MBGP4) for both IPv4 and IPv6 multicast RIB for
multicast routing purpose. For more information about the BGP see “Xorp BGP Routing
Daemon” [20] and rfc-4271 [3].

Open Shortest Path First (OSPF) module
This is the OSPF routing daemon. There are separate IPv4 and IPv6 daemons, because
unlike BGP there is no real need to tie them together. For more information about the
OSPF module see the xorp website, the source code and rfc-2328 [4]. No separate xorp
document about the OSPF implementation has yet been released from the xorp project.

Routing Information Protocol (RIP) module
This is the RIP routing daemon. Similarly to OSPF, the IPv4 and IPv6 daemons are sepa-
rate. For more information about RIP see “RFC-2453. RIP Version 2.” rfc-2453 [21].

Intermediate System - Intermediate System (IS-IS) module
This is the IS-IS routing daemon. The is-is routing protocol derives from the OSI network
specification. The xorp IS-IS project is not yet published.

Multicast routing modules
The overall design of the multicast routing system is described in the xorp design document
“Xorp Multicast Routing Design Architecture” [22].

Protocol Independent Multicast – Sparse mode (PIM-SM) module
This is the PIM-SM module. For more information see the “PIM-SM Routing Daemon”
document [23].

Internet Group Management Protocol / Multicast Listener Discovery
(IGMP/MLD) module
This is the MLD/IGMP handler. It implements the router-side part of MLD and IGMP
protocol. Its main purpose is to discover local multicast members and propagate this in-
formation to multicast routing daemons such as PIM-SM. The IGMP (IPv4) and MLD
(IPv6) daemons are separate implemented modules. For more information about the xorp
MLD/IGMP implementation see “Xorp MLD/IGMP Daemon” [24].

Other modules

Forwarding Entity Abstraction (FEA) module
The Forwarding Entity Abstraction (FEA) is a common interface towards the packet for-
warding hardware. The FEA controls all network interface cards at the hosting OS (e.g.
issuing proper ifconfig commands etc.), installs multicast support, and is also respon-
sible for the communication with the Click modular router system if installed.

By definition xorp network interfaces has a two level hierarchy. The real (physical)
interfaces are called interfaces and virtual interfaces are called vif. All IP setup is
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done at the vif level. If an physical interface like an Ethernet NIC is capable of handling
virtual LANs (VLAN) these are defined as a sub interface of the physical interface as a
vif for each VLAN. If no virtual layer is existing at an real interface, a vif must still be
configured to define the IP-interface for this interface card. The names for interfaces are
usually the names used by the hosting OS for a given interface. Vif names are usually the
same with an added decimal number to identify the VLAN.

The multicast-related functionalities are logically separated from the unicast-based func-
tionalities in the Multicast Forwarding Engine Abstraction (MFEA), though the MFEA is
part of the FEA process.

The FEA is described in more detail in the xorp document: “Xorp Forwarding En-
gine Abstraction” [25], and the MFEA is described in the xorp document “Xorp Multicast
Forwarding Abstraction” [26].

Routing information Base (RIB) module

The RIB holds a user-space copy of the entire routing/forwarding table, complete with
information about where each route originated from (e.g. which protocol, and when). For
more information about the RIB see “ xorp Routing Information Base (RIB) Process” [27].

Forwarding Engine (FE) subsystem

The forwarding engine is the underlaying IP subsystem that handles the actual IP packet
stream that passes through the xorp host. It is usually the default IP subsystem of the xorp
host, but it can also be a Click modular router (kernel) module that handles the packets
being routed. Theoretically it can also be custom made IP subsystem, e.g. implemented at
a multi port Network Interface Card (NIC) which is capable of routing IP packets between
its local ports - and this way off-loading the IP subsystem of the xorp host.

3.3 Xorp operation overview
The xorp system has an overall manager module, called The xorp route manager (rtrmgr),
its main task is to read the xorp configuration file, interpret it and communicate the contents
to the rest of the modules in the xorp router. To implement the setup described in the
configuration file, the router manager builds an in-memory configuration tree where each
configuration clause is stored in its own node. The configuration tree holds the running
configuration of the router. Via the xorp shell (xorpsh), users can interactively change the
content and hence the running configuration of the router. As an example if an IP address of
an interface is changed in the in-memory configuration tree, the xorp rtrmgr communicates
this to the FEA which issues a proper command to the underlaying hardware to change the
IP address of the interface.

Templates driven xorpsh and rtrmgr

The rtrmgr and the xorpsh uses templates that describes functionality for each module
included in the xorp project.

Templates control the syntax and parameter types of each node in the in-memory con-
figuration tree, allowed value ranges for each parameter and what actions to be executed
when configuration parameters are added, deleted or changed. The template also describes
where in the configuration tree parameters for each XRL call to a module are stored.

Templates also defines the structure of the configuration tree for each node and the
names and types of the parameters available at each node. Templates contains a header
and a number of sections. The configuration tree structure defined is used both for building
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the in-memory configuration tree (holds the current configuration) and at the same time it
defines the configuration language and what values and actions are valid for each node.

The header defines which other modules the current template depends on. This is used
by the rtrmgr to startup the needed modules only.

One section of the template file defines the structure of the configuration tree.
Another section contains the information about what actions to emit towards the vari-

ous xorp modules to implement the functionality expressed in a given in-memory config-
uration node. Actions can typically be: establishing, changing or deletion of functionality
contained in a given node and what XRL calls to emit for each node, to implement the
system function the node represents.

Yet another section of the template file contains help texts (short and long versions) for
the interactive user using the xorpsh CLI interface program. Help texts can be displayed by
user commands for each node in the configuration tree.

Xorp Shell (xorpsh)

The user interface for xorp is the xorp shell which is implemented in the program called
xorpsh. The xorp shell connects to the rtrmgr process to get access to the in-memory
configuration tree which holds the current configuration of the xorp system. The xorp shell
uses the templates which describes each module in order to know what actions each node
in the configuration tree supports. The xorp shell implements the CLI through which the
users controls and configure the xorp system.

When a node or a parameter is crated, edited or deleted the xorp shell notifies the
rtrmgr, which then executes the changes in the in-memory configuration tree and invokes
the relevant actions as described in the template to deploy these to the system.

3.4 Xorp configuration language
The current Xorp configuration language will have to be extended to be able to express
virtual router instances. To facilitate the discussion about this We will give a short overview
of the existing configuration language from Xorp version 1.6. Below we provide a short
description of the xorp configuration language.

The Xorp router has a configuration language, structured as a tree with branches, and
leafs. Each branch can contain either an unnamed node or a number of named nodes and
a number of leafs. Leafs consists of typed data. e.g. an IP version 4 address (type ipv4)
consisting of 4 8-bit numbers. The configuration tree can be edited with the xsorpsh
utility, or loaded into Xorp from a file at startup or when initiated by a user command.
Below we provide a list of the configuration nodes at the top level of the xorp router version
1.6 configuration language.

fea Configuration subtree for the Forwarding Engine
Abstraction

firewall Configuration subtree for the firewall
interfaces Configuration subtree for network interfaces
plumbing Configuration subtree for plumbing modules
policy Configuration subtree for routing policies
protocols Configuration subtree for routing protocols
rtrmgr Configuration subtree for the Router Manager

Figure 3.3: XORP vers. 1.6 configuration language top nodes.

The configuration syntax consists of the following top-level nodes: interfaces, proto-
cols, fea, plumbing, policy, firewall and rtrmgr which has the following uses:
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interfaces node Describes the configuration of the physical and virtual interfaces that is
controlled by the router.

protocols node Configures the routing protocols and all aspects of route exchange with
peer routers. Sub elements can be one or more elements from this list: static, rip,
ospf4, ospf6, bgp, igmp, mld, pimsm4, pimsm6, fib2mrib, snmp.

fea node: Configures the Forwarding Engine Abstraction (FEA), which controls the uni-
cast packet forwarding setup of the router. The forwarding of packet is configurable
in ipv4 and ipv6 address family.

plumbing node: This configuration clause controls the multicast forwarding of packets
and plumbing together of packet forwarding functionality. The multicast configura-
tion must be a part of this grouping.

policy node: Policies are logic operations / decisions that should be run on routes. The
policy statements defines the logic operations and what routes they are valid for. The
policies are used in e.g. protocol statements of a routing protocol to be activated.

firewall node: The firewall support in xorp enables packet inspection of packets sent through
the Xorp router. This enables filtering rules based on content of each packet sent
through the router.

rtrmgr node: The rtrmgr configuration clause is used to configure the xorp rtrmgr to use
external helper programs when retrieving and saving configuration files. A few other
configuration parameters can be configured here too. Examples are: config-directory,
load-tftp-command, save-tftp-command, load-ftp-command and
load-ftp-command.

With this short introduction to the Xorp router architecture and the configuration lan-
guage, we have the basic understanding of the Xorp system to understand the changes
imposed to Xorp when designing the support for virtual router instances.
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Chapter 4

Analysis of XORP with virtual
router instances

4.1 Introduction

This chapter focuses on analyzing how XORP can be remodeled into supporting virtual
routing functions by using the FreeBSD 8-Release virtual network stack environment. For
readers unfamiliar with the XORP system architecture we have provided an introduction
to this in chapter 3 that vi recommend reading to get a better understanding of the XORP
analysis and discussions in this chapter.

We introduce the analysis with a list of identified issues from our reading of the XORP
project documentation and the FreeBSD virtual network stack environment documentation
available, and from working with, and testing both systems. In the following we will work
our way through the list and analyze the issues and drill down into the details topic by topic.

We will throughout the analysis and design phase prefer design solutions where the
XORP code and modules fits into the FreeBSD 8-Rel virtual network environment concept
with the smallest changes needed in the XORP code. Some times we may not choose
the best and most obvious general solution to the problem, however we hope that this
initial version of XORP supporting virtual router instances can be some sort of a base for a
possible later general version of XORP supporting virtual router instances. We will try to
mark the areas where a better general and long lasting solution may be available e.g. with
an possible extra cost of rewriting or redesigning parts of a few XORP modules

4.2 Questions for further analysis.

This section lists relevant issues from the meeting of the current XORP single instance
architecture and the FreeBSD virtual network environment, which we want to analyze fur-
ther during the process of creating a system design with support for multiple virtual router
instances. The list of open issues and questions needed to be analyzed further before we
are able to propose an virtualized XORP architecture model. We have sorted the list so
questions regarding the same XORP module or topic are listed next to each other:

• General xorp design: What XORP processes will be needed in a virtual router in-
stance, to create a working setup for a virtual routing function? What modules will
be relevant to have in the main XORP instance? (Further discussed in section 4.3.5.)

• General xorp design: What information besides configuration parameters must be
exchanged between the main XORP instance (virtual network environment), con-
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taining the rtrmgr and the virtual router instances servicing each network realm the
router is servicing? (Further discussed in section 4.3.5.)

• FEA: Should / must every virtual router instance have its own FEA module talking
to the hardware? (Further discussed in section 4.3.1.)

• FEA: From what XORP instance is the physical / virtual network interfaces config-
ured by the FEA, and will there be an FEA process in each virtual instance? (Further
discussed in section 4.3.1.)

• FEA (Configuration language): Where in the configuration language will we config-
ure the XORP physical / virtual interfaces? (Further discussed in section 4.3.1.)

• FEA: The file route socket.cc: Opens a AF ROUTE / PF ROUTE socket to the ker-
nel routing table. How is this fitting into in the virtualized network environment?
(Further discussed in section 4.3.1.)

• RIB: Will there be a RIB instance in every virtual router instance or will a central
RIB process common for all virtual router instances be a better solution? (Further
discussed in section 4.3.2.)

• Rtrmgr: How is the rtrmgr communicating with the virtual XORP router instances?
Are commands sent from the rtrmgr in the main XORP instance using e.g. jexec(8)
command calls be sufficient to do the job, or will more connection oriented RPC
channels be needed e.g. for transport of XRL command call outs and the asyn-
chronously call-backs with results? (Further discussed in section 4.3.3.)

• Rtrmgr: How will the login (user and group) identities be handled between virtual
router instances? (Further discussed in section 4.3.3.)

• Rtrmgr: To what extent should the main XORP router instance have configuration
right and control over the virtualized router instances, the operating system and the
physical hardware devices? (Further discussed in section 4.3.3.)

• Rtrmgr: How do we ensure the configuration file can be saved when the rtrmgr
processes are distributed into several virtual network instances? (Further discussed
in section 4.3.3.)

• Bridging: How do we implement and configure epair(4) interfaces and bridge(4)
devices? (Further discussed in section 4.3.7.)

• Bridging: How is the mapping of virtual router instances to VLANs done? (Further
discussed in section 4.3.7.)

• MPLS: If MPLS is implemented at a later state, how would a suitable design model
look like? (Further discussed in section 5.2.)

• Inter VRF: How do we leak addresses between different virtual router instances? A:
How do we configure this? B: How does the traffic flow between these? (Further
discussed in section 4.3.7.)

• Inter VRF: How is route information being exchanged between virtual router in-
stances? (must they be exchanged?), or is standard routing protocol peering the way
to do this? (Further discussed in section 4.3.7.)

• SNMP: How will SNMP communication to the router happen? (To a central SNMP
agent or possible to SNMP agents in each virtual router instance?) (Further discussed
in section 4.3.9.)
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• SNMP: How will the SNMP info and alarms (polls and triggers) be routed internal
between virtual router instances? (Further discussed in section 4.3.9.)

This concludes the list of issues we have noted during the initial considerations about
this project. In the following sections we will analyze the issues listed and from there
conclude which path we will take towards a design solution.

4.3 Analyzing the listed design issues.
Implementing a virtualized version of XORP rises a number of questions listed above that
we will analyze further in this section.

During the analysis we will try to get the listed issues sorted out and create a XORP
system design that we believe is functional and not too awkward to understand, maintain
and operate. As stated earlier we will prefer using as many parts unchanged from the XORP
single instance router to simplify the changes needed in this first version of a virtualized
XORP router.

We will start analyzing the questions for the part of the XORP system that we believe
will have the most effect on the total design and then next try to work through / analyze
the questions with (possible) lesser overall design implications. The parts we will analyze
first are the FEA, the RIB and the rtrmgr. We start with the FEA because it controls the
interface to the hardware and the rib because it communicates with all the router protocol
modules and might need to be changed to hold some virtual-instance (Virtual private net-
work) informations for each route. Furthermore the rtrmgr is responsible for the overall
internal router management and it will of cause needs to be changed to enable support for
virtual router instances.

4.3.1 FEA analysis
In the single instance router the Forwarding Engine Abstraction (FEA) controls both levels
of XORP interfaces, the physical network interfaces which in XORP is called Interfaces,
and the logical interfaces which in XORP is called virtual interfaces or vifs. In our FreeBSD
setup with virtual network instances physical interfaces can both be a real physical inter-
face such as a network interface card (NIC) or a software version of the same inside a
virtual network environment, in this case we will use the epair(4) device as the soft-
ware network interface. Additional the FEA also maintains the communication to the FEs
(Forwarding Engines) that the router utilizes. In FreeBSD this happens via a socket to the
route(4) device.

FEA: From what XORP instance is the physical / virtual XORP interfaces config-
ured?, and will there be a FEA process in each virtual instance?

We search for a solution to how the many combinations of physical interfaces and virtual
XORP router instances shares the task of configuring the limited number of hardware a
given router have. The picture might also be further complicated by the fact that we are
introducing two new devices to be able to handle higher numbers of virtual router instances
namely the epair and bridge devices. The configuration of these new devices are
discussed below in section 4.3.7.

After considering this we face either a general rewrite of this part of the FEA or to reuse
it as-is, with the added complexity by having the router administrator to only configure each
physical device from one place in each router configuration common for both the main and
virtual instances.

We are deciding to reuse the existing FEA module as it is, and implicitly this will be a
decision that also implies that there will be a FEA module located in the main XORP router
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instance and in each virtual XORP router instances that are responsible for the configuration
of the dedicated physical interfaces and virtual interfaces vifs existing and used (configured)
in each XORP router instance.

FEA: Should/must every virtual router instance have its own FEA module talking to
the hardware?

Yes, implicitly decided above. In the next question to be analyzed, we discuss the configu-
ration language aspect of the same question to ensure it fits here too.

FEA (Configuration language): Where in the configuration language will we configure
the XORP physical / virtual interfaces?

There are two overall design paths that can be taken from here. One which leaves the origi-
nal configuration syntax and semantic as it is, and another where the physical configuration
of interfaces is moved to a new section of the configuration file e.g. a global-setup clause,
that holds global configuration section and is only interpreted by the rtrmgr in the main
XORP instance.

As we don’t really get any interesting new functionality out of moving the configuration
despite a bit more clean system setup we believe this (for now) will only result in a lot of
work without any real new outcome.

Based on this we are deciding to keep the existing semantic with the following com-
ment:

The existing FEA can only configure interfaces that are existing (available) inside the
virtual router instance (jail). This means that interfaces must be created or/and moved to
the relevant jails before the FEA starts configuring these. This removes the problem of
which router instance should/can configure interfaces.

The FEA opens a AF ROUTE / PF ROUTE socket to the kernel. How is this fitting
into the virtualized network environment?

The FEA process opens a routing socket to the kernel forwarding table1 that contains the
active routes that IP packets are routed by the FreeBSD network stack. The kernel forward-
ing table stores the routes sent from the RIB. When changes are received by the RIB from
e.g. a routing protocol - these are sent via the route(4) device to the FreeBSD kernel
forwarding table by the FEA.

The virtual network environment vnet in FreeBSD 8-Release contains a dedicated
instance of the routing infrastructure, where communication from the kernel routing socket
is sent to. If all XORP processes that handles routing informations for a specific IP realm
stays within the same network environment, then calls to the kernel will be serviced by the
same network environment instance of the kernel and it all looks exactly the same as in
the non virtualized kernel (and XORP router). Then the XORP modules from the single
instance XORP router can then be reused unchanged in each virtual XORP router instance.

If the kernel routing table exists in each FreeBSD virtual network instance, this task
is reduced to basic reuse of functionality from the single instance XORP router code. We
believe this makes the two previous decisions about having a FEA process in the main and
in each virtual XORP router instance even more correct.

Summary of the FEA analysis

We have analyzed 4 aspects of the FEA servicing virtual XORP router instances. All 4
aspects was solved by reusing the FEA module from the single instance XORP router,
including its configuration syntax language. Some of the aspects would have been much

1In FreeBSD the kernel forwarding table is accessed via the route(4) device.
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more complicated by not having the FEA module in the main and in each virtual router
instance.

We also get much clearer about the question of what router instance should configure
interfaces as these has to be put in place in the correct router instance (jail) prior to the
XORP router instance is started.

4.3.2 RIB analysis
RIB: Will there be an RIB instance in every virtual router instance or will a central
RIB process common for all virtual router instances be a better solution?

The RIB (Routing Information Base) contains all the routes known to the router by con-
figuration and via the routing protocols, and stores details of information about where the
routes originates from and a few other details of each route. The RIB selects the best route
to each of (all) the networks it knows of and send these to the kernel forwarding table via
the FEA. Regarding the RIB as a component in a virtualized router system, we have found
the following details from the XORP documentation. The XORP rib design paper [27]
(p2) states:

“We do not currently support multiple RIBs for other purposes, such as VPN
support, but the RIB architecture will permit such extensions.”

and in the XORP design overview document [12] (p5) it states:

“On a router with multiple FEs, the RIB is responsible for splitting up the
routing table amongst the FEs and for figuring out how to forward between
FEs.”

In this context “We” are not a router with multiple FEs (forwarding engines) but a
router with (possible) multiple virtual router instances. When 2 virtual instances of a router
are connected together by IP links the (virtual) routers operates in the same IP realm and
does normal exchange of routing information via routing protocols, just as if they were
non virtualized dedicated routers. In all situations the standard RIB operation fully fulfills
the purpose of holding route information for a single IP realm exactly as it does in the
single instance router. Within the scope of this project we don’t really need any additional
information regarding external information about routes inside each virtual router instance.
This is because all routes in the RIB and in the current network environment context belongs
to the (same) current IP realm.

The picture might change if we add MPLS to the XORP system, as MPLS labels are
local to each IP-MPLS link, and the labels identify which virtual network the packet be-
longs to. But even this might be easy to solve by a local label table in the MPLS layer. See
further MPLS discussions in the MPLS section in chapter 5.

Summary og the RIB analysis.

Based on this we decide that each virtual router instance has its own RIB process. The
existing RIB module, from the single instance XORP router can be used as-is without
changes in each of the virtual instances of the router.

4.3.3 Router manager (rtrmgr) analysis
The rtrmgr is the central router administrator process in the XORP router system. At
startup it reads the XORP configuration file and builds an in-memory configuration tree
from it. Next the rtrmgr starts up and initializes the individual XORP processes to the
state specified by the in-memory configuration tree. The Command Line Interface (CLI)
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program xorpsh communicates with the rtrmgr and distributes configuration changes from
the user into the in-memory configuration tree. After each commit of a set of changes to
the configuration-tree, the rtrmgr implements the changes into the relevant processes of
the XORP router. We will cover the xorpsh part of the rtrmgr in the next section (section
4.3.4).

In a virtualized version of the XORP router the rtrmgr is still going to be the central
process but some changes needs to be implemented to be able to manage virtual instances,
and understand new configuration elements e.g. the virtual router instances, bridge(4)
and epair(4) devices (both covered later). We are considering the following architec-
tural changes to the rtrmgr enabling it to support virtual instances:

• The rtrmgr is prepared for controlling a router with virtual instances.

• The configuration language is extended with support for virtualized router instances,
each in a separate FreeBSD child jail with a dedicated instance of the virtual
network environment instance.

• A rtrmgr instance is located in each virtual router instance, and should be responsible
for managing the local XORP processes inside each virtual router instance. To be
able to distinguish between the rtrmgr process in virtual router instances and the
rtrmgr instance in the main XORP process. We will rename the rtrmgr process
residing in the virtual instances to rtrmgr-vi, and keep the rtrmgr name for the version
living in the main XORP router.

• The rtrmgr should create and destroy virtual router instances as needed.

• The rtrmgr should be able to control the rtrmgr-vi in the virtual router instances via
some suitable form of communication channels.

• The user and rights management will have to be identical in each virtual XORP router
instances.

Rtrmgr: How is the rtrmgr communicating with the virtual router instances?

Inside each instance of the XORP router a lot of communication is happening between the
modules. In this project we are trying to implement several instances of each modules,
each instance in a separate virtual XORP router instance.

There are no problems with establishing communication paths from the virtual network
environment, where the main XORP router instance is living and into the jails where the
virtual XORP router instances are residing, as these are child jail instances of the main
XORP router virtual network instance.

The other direction is not as easy as it is forbidden for child jail instances to establish
communication to their parent jails. They actually don’t know anything about their exis-
tence at all (at the jail level). So if XRL callbacks is needed between the child jail instances
and the main XORP router jail instance we need to create this possibility.

This problem seems to require a bit more analyzing. We believe this is a problem
thats should be treated under the IPC finder analysis which can be found further down this
section where we will continue this discussion.

Rtrmgr: To what extent should the main XORP router instance have configuration
right and control over the virtualized router instances, the operating system and the
physical hardware devices?

The main XORP instance will create each virtual XORP network instances and will be the
parent network instance to these. This also means they have all possible administrative
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rights over the virtual network instances which includes: changing, destroying, assigning
and removing of devices, start up root processes etc.

The main XORP router need to have configuration rights to the physical network in-
stances that is a part of the configuration. This is normally provided by starting the rtrmgr
from a root user, either at system startup or manually by the root user. This means that
the user or process that starts up XORP must have the administrative rights of the network
devices where XORP is started.

In a jailed environment the root user have all administrative rights over the interfaces
available in (e.g. assigned to) the virtual network environment, but the interfaces must be
present inside the virtual network environment or be able to create these. The root privilege
can create interfaces, but it is not able to move these to or from the parent virtual network
instance (jail). This means the interfaces has to be created or moved from the main router
instances as it is the parent of all virtual router instances.

Rtrmgr: How will the login (user and group) identities be handled between virtual
router instances?

The XORP router user authorization, decides which user has the right to perform adminis-
tration of the router. In the single instance XORP router it has been implemented this way:
The Unix group membership of files in the file system, from the standard Unix system is
used here. User data is contained in the Unix system /etc/passwd(5) file and the list
of users with administrative rights is held in the Unix system group file /etc/group(5).
The group named xorp defined in the /etc/group(5) file of the Unix host which the
XORP software is installed at, is used to assign administrator rights to users. Any Unix
user that is a member of the xorp group has granted router administrative rights and can
enter the configuration mode of the xorpsh/rtrmgr and are able to change the configuration
of the XORP router. Any other users on the Unix host only have read only rights to the
configuration of the XORP router.

To ensure that all virtual XORP instances will share the same administrative user rights,
we need to ensure that the two files /etc/passwd(5) and /etc/group(5) have
identical setups regarding the XORP users and the xorp administrators group.

As all our virtual XORP instances will share the whole file system with the main XORP
instance as each virtual network environment (jail) will have the same root directory as
the main XORP virtual network environment. This way we have ensured the user creden-
tials will be the same for all main and virtual instances of the XORP router.

Also the rtrmgr communicates via file based methods with the xorpsh when validating
administrator rights for the user starting instances of the xorpsh, by writing a file in the
/tmp directory, that the xorpsh reads. This method is also supported by the chosen solu-
tion. If a fixed file name is used for the file in the /tmp directory the then we must ensure
the these files does not clash with the same file names form other virtual router instances.
The solution can be either to use the process-id which is a globally unique numerical value
in the host, as a part of the file name or alternatively to mount a dedicated /tmp file system
for each virtual router instance.

Rtrmgr: How do we ensure the configuration file can be saved when the rtrmgr pro-
cesses are distributed into several virtual network instances?

In the single instance XORP router there is one configuration file that is read by the rtr-
mgr. When we distribute the rtrmgr into more virtual network instances we need a way of
maintaining the router configuration in a single configuration file. So how do we distribute
the configuration file to the various XORP rtrmgr modules that each need a part of the file
content, and how do we re-assemble the distributed configuration into one file again.

Here we would benefit by having one central in-memory configuration tree residing in
the main XORP instance as it then could be saved to disk by the rtrmgr living here. In the
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first version of the virtualized XORP router we reuse the original rtrmgr as-is inside the
virtual XORP instances, and therefore we need to make the parts fit together. By choosing a
distributed version of the in-memory configuration tree, where each virtual XORP instance
has its own local sub-tree to be responsible of, then we need a method to interface to the
main XORP rtrmgr instance in a way it knows of from the single instance router. Two
methods comes into mind when we consider this:

• File based configuration interface.

• Shell command based interface. E.g. where xorp commands are streamed from the
main virtual router instance (parent jail) to the xorpsh in the virtual router instances
(child jails). See the XORP user manual section 1.8 [17].

As we (in section 4.3.4 “Analyzing of the xorpsh administration utility” below) have
decided to start off with a administrator model where the router administrator starts an
instance of the xorpsh in each virtual network instance where he would like to administer
XORP, we can pass this problem at startup by splitting the configuration file for the XORP
router (with support for virtual instances) into a number of configuration files, one for each
virtual XORP instance that matches the single instance XORP router syntax. By designing
the configuration language so that the syntax used for the virtual XORP instances is exactly
identical to the standard single XORP instance configuration syntax ensures it will match
the syntax of the reused rtrmgr module from the single instance XORP router.

The rtrmgr in the main XORP instance will have to create a configuration file for each
virtual XORP instance, from the main XORP configuration file. The name of the virtual
XORP instances will be a part of the configuration filenames for the virtual XORP in-
stances. When the virtual instances starts up, they will each read the file that belongs to
their virtual XORP router. This is initiated by the rtrmgr in the main XORP instance when
it starts the virtual XORP instances with an option -b <config-file> that points to
the correct configuration file in the shared file system.

The task of saving a configuration file from the running contexts of all (main and vir-
tual) XORP instances is a bit more complicated. The main XORP instance must direct a
command to each virtual XORP instances to save the current running configuration to the
same file as the router was started from, then afterwards the rtrmgr of the main XORP
router will have to assemble these into a global configuration file with the correct syntax.

This is of cause a hack and the optimal solution to this problem will be to rewrite
parts of the rtrmgr to work in a distributed configuration that have a suitable protocol
between them to coordinate the in-memory configurations and other work tasks e.g. xorpsh
command proxy/routing and reading and writing of configuration files to or from disk or
via the network.

Summary of the rtrmgr analysis.

During the analysis of the rtrmgr we have analyzed various aspects of its operation. We
have found solutions and workarounds for the problems we have analyzed, but it seems
clear that the overall virtual XORP router would benefit greatly by a rewriting the rtrmgr
to a distributed model.

First we encountered that the two way communication channel between the main XORP
instances and the virtual XORP instances has issues regarding communication from the
virtual XORP instances and back to the main XORP instances, and further have a module
naming issue that will create problems for the sending/routing of XRL messages between
modules with the same rtrmgr name that lives in different virtual network instances. These
aspects will be analyzed further in the section 4.3.6 “IPC finder analysis” below. We have
analyzed the user and administrator group rights between the virtual network instances,
which we have argued will not be a problem with the implementation we propose. At last
we have found a workaround for the task of the loading and saving of the configuration
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in the distributed setup we have proposed. It is clearly a workaround and an rewrite of
the rtrmgr to become a distributed module will provide the needed extra communication
between instances of the rtrmgr that is needed to solve this.

4.3.4 Analysis of the xorpsh administration utility

In the single instance XORP router the xorpsh program connects to the rtrmgr process. In
the virtualized XORP router there is one main rtrmgr process in the main router instance,
and a rtrmgr-vi process managing each virtual router instance.

We will need a way to select which virtual instance of the router is affected by user
commands when we communicate with the router from the xorpsh. Normally the xorpsh
commands are manipulating nodes in the in-memory configuration tree. Each location in
the configuration tree affects exactly one instance of the XORP router, which is the one the
related command should be sent to.

A central issue is how the xorpsh program communicate with the rtrmgr and rtrmgr-vi
processes and still keep some sort of usable administrative interface to the complete router
system, and maintain the feeling of working with one router with several virtual instances.
There are more ways to accomplish this.

One obvious and general solution is to let the xorpsh client program connect to the
rtrmgr in the main XORP instance, and then let the rtrmgr distribute the commands to
the rtrmgr-vi processes each responsible for a virtual router instances. A virtual XORP
router instance is living in a child jail with vnet virtual network environment enabled.
This would require the specification of a new protocol and introduce a new XRL interface
instrumented to handle communication between the rtrmgr and the rtrmgr-vi modules. This
way we would still maintain the look and feel of communicating with a single router, that
have several virtual instances that are seamless manipulated by changes committed into the
in-memory configuration tree.

Another solution to this might be making the xorpsh responsible for contact to the
relevant rtrmgr or rtrmgr-vi processes according to the commands issued by the user.

But a much easier solution to implement would be to let the user connect the xorpsh
process directly to the relevant rtrmgr or rtrmgr-vi process. It is by any means not a perfect
solution in the long run, but for simplifying the changes needed it is a much easier solu-
tion. The xorpsh utility does not have a option for specifying which rtrmgr (or process)
to connect to, so the quick solution would be to install a version of the xorpsh utility in
each virtual XORP router instance (virtual network environment), that the user can start
up with a suitable jexec(1) command from the virtual network environment where the
main XORP instance is living.

Summary of the xorpsh analysis.

We are choosing the last and easiest solution where the user stats up a instance of the xorpsh
in each virtual XORP router instance he wants to administrate. This decision is argued by
minimizing the amount of changes needed. The cost is a somehow more inefficient user
interface and an not so perfect user experience. The user pays the extra cost of having to
start a new xorpsh instance in each virtual XORP router being administered.

When the rtrmgr at a later state is going to be redesigned this will be one of the topics
to take into account then. Introducing an interface to handle communication between the
rtrmgr in the main XORP router instance and its peer rtrmgr-vi processes residing in each
of the virtual router instances seems to be the ideal solution to go for. This will maintain the
look and feel of communicating with one router with several virtual instances, and also take
care of the workarounds from sending configuration data to the virtual XORP instances and
retrieving these again when the configuration are saved into one file.
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4.3.5 General XORP design analysis

The general design of the virtualized XORP router has many aspects. The fact that we have
this subject somehow late in the analysis work is that we needed to have a good understand-
ing of other central aspects such as the FEA and the rtrmgr, as we believe the way we can
realize a virtual XORP router with these modules in place, will have a significant influence
on the rest of the design choices we will take.

From the list of issues in section 4.2 we have two issues regarding the general design
category.

General XORP design: What XORP processes will be needed in a virtual image?

To get a natural flow of the reading of the report we will answer this question as a part of
the presentation of the proposed architecture in section 4.6.

General XORP design: What information besides configuration parameters must be
exchanged between main and virtual XORP router instances?

The dependencies between the main XORP router instance and the virtual XORP router in-
stances are entirely of router administrative type, and should only consist of XRL (eXternal
Resource Locater) type communication.

All communication between XORP modules is done by XRLs and consists of asyn-
chronously communication between XORP modules. Modules can call other XORP mod-
ules and send XRL commands (e.g. configuration commands or routing updates) from one
module to another. The response can either be returned right away or can asynchronously
be returned from the called module, depending of the request issued. Asynchronous re-
sponses can arrive any time in the future when the data is available. In asynchronous call
scenarios, the initial XRL call to the module returns immediately only with a small return
status that acknowledges the transmission to the other XORP module.

At this point the first communication channel is closed (similar to when a function
call has returned) and the called function will have to, use a callback method to initiate a
new communication channel (or function call) to send back the response to the exact same
object instance that initiated the XRL call. The XRL system has features to provide this
inside a normal UNIX environment.

Here we have a problem as a process in a FreeBSD child virtual network instance (jail)
(e.g. processes in a virtual XORP router instance) are not allowed to call out of the jail and
back into the parent jail. The only allowed direction is from parent jails into child jails.

This problem can only be solved by using some form of communication that can be
opened from the parent jail and stays open and wait for the responses to return via this
channel. A lot of possible ways can be thought of here. IPC, FIFO or shared memory
between 2 jails.

We consider searching a solution in the area of the IPC finder process as it already is
responsible of the task of communicate with the XORP modules. We guess that the finder
process can be instrumented to establish channels between the finder processes in each
jail that is a part of the virtualized XORP router (jails with main and virtual XORP router
instances)

We will continue the analysis and search for a solution to this issue in the section “IPC
finder analysis” see section 4.3.6 below.

The remaining part of the question about what information that must be exchanged
between xorp router instances, highly depends on the version of e.g. the rtrmgr we chose.
So we will postpone the more precise answer to the section where we present the proposed
solution for a XORP router architecture that supports virtual router instances. See more in
section 4.6.
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Summary of the general XORP design analysis.

All the communication between XORP modules are entirely based on XRLs, and we need
a way to establish these between router instances and take a closer look into this in during
the analysis of the IPC finger in 4.3.6 below.

4.3.6 IPC finder analysis.
The XORP IPC finder module is normal integrated with the same executable as the rtrmgr
which means that it isn’t necessary to start up an individual IPC finder instance.

A look into the documentation of IPC finder module tells us that the IPC finder uses
module name and version number to identify each XORP module.

In our virtual router design we are working with multiple instances of the same XORP
modules (each instance of the same module has identical module name and version number)
but only one module with each name will exist within each virtual network instance (jail).
We may use an unique extra id tag for each virtual XORP router instance to differentiate
instances of the same XORP module from each other. Either the jail-id or the configured
name for each virtual XORP instance can be used here. If the configured name for a
XORP virtual router instance is also configured as the FreeBSD jail-name when the jails
are created then both parameters will have the feature of being unique among all jails
in a FreeBSD system, and then usable as a routing-id between the existing XORP router
instances (main or virtual) in the IPC finder module.

From section 3 in the document “XORP Inter-Process Communication Library overview” [14],
we know that each XORP module registers to the IPC finder at startup. During the regis-
tration process all XRL interfaces in a module registers their full list of supported XRL
interfaces one at a time, and when the registration has taken place the modules interfaces
will be published towards other XORP modules via the finder.

When a XORP process wishes to dispatch an XRL call for the first time it sends the
XRL lookup request to the finder that resolves the XRL and replaces the transport and
protocol specific parameters found for the XRL being resolved, and returns the XRL to the
requesting module. Next the XRL can be sent directly to the requested XORP module. The
resolved XRL can be saved in a client cache for later use, so the IPC finder doesn’t have to
be contacted for resolving all similar XRL calls to be sent.

Each XRL target has an associated class name and an instance name. Class names
indicate the functionality that the target implements and there may be multiple targets in
the IPC system with the same class name. Instance names are unique identifiers for each
target in the IPC system. XRLs to be resolved by the finder may address a target by class
name or by instance name. The first XRL target class that registers with the finder in each
class will be the default XRL for that class that future requests for the same class resolves
to.

For this project it only seems necessary for the main XORP instance to query names for
virtual XORP instances and from the virtual XORP instances the main use will be querying
XRL targets in the main XORP instance. Communication between virtual XORP instances
will be limited and most relevant for future requirements.

To achieve the desired functionality where multiple instances of XORP modules living
in different virtual XORP instances can be identified we need to add the name of the virtual
XORP router instance to the module name being queried. In normal operation inside a
virtual XORP instance this is not specifically needed but when communicating from the
main XORP router instance it is important that communication can be routed to modules
in the right XORP instance.

The long term design we aim towards is the following: The IPC Finder will be able to
identify each XORP module directly by a name where the name of the XORP instance has
a part of the module name in its name. This way we establish a “global” resolver function
that can resolve all queries for modules registered in any XORP instance.
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A possible way of doing this would be to have a local and a global naming scheme.
Where the local naming scheme is the one we have from the single instance XORP router,
and the global scheme can be invoked by adding a global name part which can be the name
of the non local XORP router instance.

The local name scheme resolves always to local (inside the same virtual instance) mod-
ules, and the global name scheme resolves to XRL targets inside the named (remote) in-
stance. We might consider to add a global any-instance or wild-card name if global finder
lookup/resolver operation is wanted. This can be done by picking a global instance name
as a reserved name or keyword meaning all instances. The selected global search keyword
can not be used as the name of at XORP router instance as these are the valid routes to
existing virtual XORP router instances.

IPC finder: XRL communication transport between virtual XORP instances?

Even though we have provided name resolution for XRL targets globally, we still need to
create at transport between the virtual instances.

We still need to establish some form of transport channel for the XRL communication
between virtual XORP instances, that we discovered during the analysis of the rtrmgr:
“Communication from the virtual network instances back to the main XORP instances
isn’t possible to establish”. To resolve this we consider to create a distributed XRL router
module that has an instance running in each XORP router instance that are responsible
for maintaining a channel between router instances. The XRL router in the main XORP
instance connects to the XRL router modules in the virtual XORP router instances and uses
this connection for the XRL transport both ways. The XRL router module knows all other
XRL modules in the XORP router and can route XRL messages between these. To have
a bit of flexibility some coordination (or communication) between the IPC Finder global
XRL target lookups and the XRL router could create the routing addresses in the XRL
router when needs for communication between XRL modules in different router instances
is required e.g. when XRL lookups are performed by the IPC finder. This way we doesn’t
waste resources on creating a any-to-any routing scheme when it is only a small subset of
the routes between XORP instances that are actually used .

Summary of the IPC Finder analysis

We have analyzed the IPC finder for ways to enable a global XRL lookup scheme and
proposed a solution that supports the current IPC finder instance operation as-is and extends
the feature set with a global XRL name search that resolves XRL requests to XRL targets
residing in other named or unnamed router instances.

We also proposed a solution for the XRL transport problem that we initially believed
could be solved by the IPC finder alone, but as this module mainly provides a XRL name-
to-transport resolver service we could not solve the XRL transport problem within the scope
of the IPC finder module. This lead to the proposal of an XRL router module that resides
in all XORP router instances and establish XRL communication between instances of the
XORP router.

The XRL router module isn’t needed for the first version of the virtualized XORP router,
as we only have a very limited need for communication between the main and the virtual
XORP instances, which can be handled by jexec(1) commands from the main router
instance. But when a redesign of the rtrmgr into a distributed model comes up the XRL
router will be needed.
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4.3.7 Bridging - Inter connecting virtual routers

Bridging: How do we implement and configure epair(4) interfaces and bridge(4)
devices?.

The epair(4) and bridge(4)2 are both FreeBSD devices that are created and man-
aged from the ifconfig(8) utility. Like any other network entity of FreeBSD the de-
vices can be created inside any existing FreeBSD virtual network environment. The two
device types are needed to connect FreeBSD virtual network instances with each other or
the outside world, if they aren’t connected to the outside world directly via a dedicated
NIC. Both these devices are unsupported by XORP version 1.6. So we need to provide
some basic XORP support for these.

The epair is a set of 2 Ethernet interfaces with a logical cross-over Ethernet ca-
ble connecting them back to back. Just like most physical Ethernet Network interface
cards they can be configured with IP addresses and moved between jail devices with the
ifconfig(8) command. The two epair interfaces in a set are named epairNa and
epairNb where N is a unique numerical value among all virtual network environments.

The bridge device is an Ethernet bridge device that creates a logical link between 2
or more Ethernet network interfaces available in the same virtual network environment as
the bridge. It connects Ethernet interfaces but is not an Ethernet interface by itself. So to
connect an virtual network device to an bridge device a set of epair interfaces are needed.
The bridge device is named bridgeN, where N is a numerical value. The bridge takes
any Ethernet interface available in the virtual network instance where it resides as a bridge
member.

In our virtual XORP router setup we will not need more than one level of child jail
instances, for the virtual XORP router instances, so configuration of bridges and epair
devices will only be needed in the main XORP router instance. This enables us to connect
any number of the virtual XORP router instances with either of the device types defined in
the main XORP router instance, and epairs are used to connect virtual network instances
with bridges defined in the main XORP instance.

The configuration will be much like the normal XORP Ethernet interfaces. The de-
vices are named with their actual FreeBSD device names in the XORP configuration, and
available via the fea interface XRL methods and configuration language.

Before we can start using any of these devices they must be created, and a common
name must be agreed on in the XORP configuration. We will define the epair and bridge
in a new XORP global-setup configuration clause that are created to hold all new
configuration statements that is only needed at the main XORP network instance. The
global-setup configuration clause will be placed as the top-level clause (node) in the
configuration tree. The idea behind this is to keep the original single instance XORP con-
figuration language intact, in all the virtual XORP instances. The configuration language
and syntax for the epair and bridge devices is presented in section: 4.5.

Bridging: How is the mapping of virtual router instances to VLANs done?

A virtual router instance need to have an Ethernet interface assigned before a VLAN can
be configured. (VLAN is an Ethernet multiplex technology.) Either a physical or a virtual
interface e.g. the epair interface, can be configured in the virtual router instance. XORP
supports configuring VLANs directly on its vif devices (virtual interfaces). When configur-
ing a VLAN on an Ethernet interface the interface adds VLAN-tags to each Ethernet packet
being sent out. A small VLAN configuration example is provided in figure 4.1 below.

2The if bridge(4) is the name of the bridge kernel module in FreeBSD, the interfaces that this module
provides area named bridge(4) in FreeBSD. We prefer to use the bridge(4) name in this report as most of our use
is related to the provided bridge interface.
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interfaces {
interface dc0 {
description: "Ethernet interface with a VLAN"
vif dc0 {
address 10.10.10.10 {
prefix-length: 24

}
}
vif vlan1 {
vlan {
vlan-id: 18

}
address 10.10.20.20 {
prefix-length: 24

}
}

}
}

Figure 4.1: The example shows a XORP configuration of an Ethernet network card
which shows up as device: dc0 in the FreeBSD device list. In XORP the device name is
available as an interface in the configuration. The vif with the same name can be con-
figures with IP-addresses and vlan-id. In this example we configure the dc0 interface
in our XORP instance to send and receive Ethernet packets tagged with the VLAN-id:
18. All other VLAN tags received are ignored by this interface.The example is from
the “XORP User Manual” [17], section 3.2.2.

Summary of the bridging analysis.

We have analyzed the bridging and interconnect requirements and can fulfull the possible
setups by providing support for epair and bridge devices in the main XORP instance. We
have shown how VLAN can be configured with existing XORP functionality. We have
created a separate top-level configuration clause (node) to hold the configuration language
constructs of epairs and bridge devices. The configuration language constructs are pre-
sented in section: 4.5.

4.3.8 Analysis of inter VRF related issues.

Due to the limited project time we have been forced to skip this part of the analysis to a
future occasion. The inter VRF routing questions are about how we can insert routes in a
virtual router instances that point to IP addresses in other virtual router instances, and the
solution is having both a packet transport side as well as a route protocol/RIB aspect.

We have been looking forward to solve this issue but it will have to wait till some other
time.

4.3.9 SNMP functionality analysis

SNMP: How will SNMP communication to the router happen? (To a central SNMP
agent or possible to SNMP agents in each virtual router instance?)

For the first version of the virtual XORP router we will need to talk SNMP with the SNMP
instance in the main and in each virtual XORP router instance. This is of-cause a hack and
not a long term solution, but as SNMP is for most cases a management system interface
mostly used in larger production setups, we doesn’t believe this will make a big difference
in our first version of XORP with virtual support. Also we don’t believe that this version
will be used for production before it has undergone the next phase of clean up various
aspects of this initial design.
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SNMP: How will the SNMP (info and alarms (polls and triggers)) be routed internal
between virtual router instances?

There will not be any internal SNMP routing between virtual router instances, in the first
version of the virtualized XORP router. The SNMP agent in XORP is by design a SNMP-
to-XRL gateway, so all internal routing of SNMP will already be performed by using the
XRL protocol. SNMP triggers from the SNMP module in the virtual XORP instances sent
to SNMP module in the main XORP instance, requires the functionality from the XRL
router module we specified above, in the IPC finder analysis section. So until this is in
place SNMP will only work isolated inside each XORP instance.

Summary of the SNMP analysis.

To summarize the above analysis, SNMP from the single instance XORP version will be
available in each of the XORP router instances, main and virtual, and the SNMP man-
agement station will have to get access into each and every of the virtual networks being
serviced by the router, to access the router. Any centralized solution SNMP will depend on
the XRL router functionality.

4.4 Analysis of XORP virtual router configuration lan-
guage

When changing the XORP router system from a single instance router to a multi instance
router some changes in the configuration language will be needed to express the configura-
tion of the new functionality available.

We will try to reuse as many parts of the existing configuration language and structure
as possible, which in some ways may lead to a less perfect general design than if a more
general approach of redesigning the XORP configuration language was taken. Again we
hope that the resulting solution can be a step stone to a more genuine router configuration
language with support for virtual router instances.

To change the current configuration language to support virtual router instances, we
need to be able to express the XORP virtual router instances in the configuration syntax.

As we are planning with reusing the current single instance XORP router functionality
as-is, inside each XORP virtual router instance. We initially propose a container format
that have a full copy of the existing configuration language configuration clause for each
virtual router instance. This virtual router container can be multiplied as as many times as
needed to configure each virtual router instance. Each XORP router instance have a unique
name defined in the configuration.

Some parts of the existing configuration language might give less meaning to have
inside the virtual container, but if we as a start leaves it as-is then a possible later clean up
of the language subset for the virtual router instance can take this into account.

Below we list issues that we have discovered during the work with XORP and FreeBSD
that is related to the configuration language.

• How do we configure/represent virtual instances?

• Where in the configuration tree is Network interface cards configured?

• Where is the bridge(4) and epair(4) configured in the language? These de-
vice types are unsupported by XORP today, and must be used to connect each XORP
router instance to other router XORP instances or network devices.

• A name for each virtual router instance must be provided. Either we can use the
jail-id or jail name, which is an obvious way of acquiring a unique id for each virtual
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instance. This can be either manually configured or automatically assigned (e.g. by
using the jid created by the jail create command.) Here we will use the name in the
virtual-router configuration clause.

• The language changes need to express the parts of the XORP router that resides in
each jail

The questions has all been answered during the analysis done previously. So we will
fast forward to presenting the proposed XORP configuration language for virtual router
instances.

4.5 The proposed XORP virtual router configuration lan-
guage

Extending the XORP router with virtual routing instances impacts the configuration lan-
guage of the router. As a first hand solution we will try to extend the existing configuration
language syntax in the following way: We create a new configuration clause for the top-
level language syntax and use an unchanged single instance router configuration syntax in
each configured virtual instance.

The XORP single instance configuration syntax consists of a number of named config-
uration blocks, at the global level. To be able to use the proposed format for an extended
configuration syntax we need to create a super level instance to contain each XORP single
instances and provide a name to each of these.

In figure 4.2 is a list of existing configuration elements at the top level of the single
instance router (left), and a proposed top-level syntax design for a multiple instance XORP
router configuration language syntax (right).

-- Single instance configuration -- -- Multi instance configuration --
interfaces { ... } global-setup { ... }
protocols { ... } main-router <name> { <sic> }
fea { ... } virtual-router <name> { <sic> }
plumbing { ... } virtual-router <name> { <sic> }
policy { ... } virtual-router <name> { <sic> }
firewall { ... } virtual-router <name> { <sic> }
rtrmgr { ... }

sic means single instance configuration.

Figure 4.2: Overview of XORP single instance configuration language (left part) and
the proposed new configuration language (right part). A new top-level configuration
clause global-setup has been added to hold the new features added to the main
XORP instance, during this project. Each XORP instance is configured in a named
virtual-router configuration clause holds the full syntax of the single instance
XORP router configuration language. The main-router clause configures the main
xorp router instance.

The top level configuration elements of the XORP single instance router are moved
from the flat top-level scope into the virtual-router and main-router clause,
where the configuration of each router instance reside. The configuration of the main
XORP router instance is contained in the main-router clause, and the virtual-router
clause contains the configuration of each of the virtual routers defined. The name parame-
ter contains the name of the XORP router instances and is also used as the name for the vir-
tual network instances jail of FreeBSD where the virtual router instances are residing. The
interface configuration of each virtual instance is allowed to specify both physical and vir-
tual interfaces. A new top-level block the global-setup clause is designed to hold the
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configuration statements of the new functionality added to the virtual router. We have de-
fined a configuration language syntax for the bridge(4) device and for the epair(4)
interface.

xorp-configuration ::= <global-setup-statement>
| <main-router-statement>
| [<virtual-router-statement>] ...

main-router-statement ::= main-router <main-r-name> { <xorp-sic> }

virtual-router-statement ::= virtual-router <virtual-r-name> { <xorp-sic> }

main-r-name ::= <text string>

virtual-r-name ::= <text string>

xorp-sic ::= <A xorp single instance configuration statement>

global-setup-statement ::= global-setup { <global-statement>
[ <global-statement> ] ... }

global-statement ::= <epair-statement>
| <bridge-statement>
| <route-import-statement>

epair-statement ::= epair <epair-id> {
node-a-in: <main-r-name>|<virtual-r-name>
node-b-in: <main-r-name>|<virtual-r-name> }

epair-id ::= <numerical value>

bridge-statement ::= <bridge> <bridge-id> { <bridge-cmd-list> }

bridge-id ::= <numerical value>

bridge-cmd-list ::= <bridge-cmd> [<bridge-cmd> ... ]

bridge-cmd ::= bridge-cmd<num. value 0 .. 15>: <text string>

# The route-import-statement is not fully developed but is for now
# placed here.

route-import-statement ::= <specification not done yet>.

Figure 4.3: The XORP multi instance configuration language. The language extend
the existing XORP language with main-router and virtual-router instances
and a global-setup part that holds the new additions to the language.

In figure 4.4 we provide a small example of a virtual XORP configuration with 2 virtual
instances named router-1 and router-2 and a main XORP instance named main all
3 router instances are connected with a bridge device. The example is created to show
the configuration language for the language parts we have created. A full XORP router
configuration example would easily be several pages long and only show existing XORP
language constructs besides what we show in this example.

Summary of the language configuration

We have analyzed and created a configuration language that is able to configure virtual
router instances and the main XORP router instance with the exact same syntax as the
single instance XORP router. The new added functionality is kept inside a new top-level
configuration clause named global-setup which contains the configuration of the two
added devices, the epair and bridge devices and additionally we have reserved a language
construct for the configuration of inter VRF routes that is routes between virtual router
instances. Due to limited time for this project we did not crate this part of the language.

The bridge device has an theoretically unlimited number of ports we have provided
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global-setup {
epair 0 {
node-a-in: main
node-b-in: main

}

epair 1 {
node-a-in: router-1
node-b-in: main

}

epair 2 {
node-a-in: router-2
node-b-in: main

}

bridge 0 {
bridge-cmd1: addm epair0b
bridge-cmd2: addm epair1b addm epair2b
bridge-cmd3: addm bge0

}

main-router main {
<Instance main: XORP single instance configuration with interface epair0a>

}

virtual-router router-1 {
<Instance router-1: XORP single instance configuration with interface epair1a >

}

virtual-router router-2 {
<Instance router-2: XORP single instance configuration with interface epair2a >

}

Figure 4.4: Example of the XORP virtual instance router configuration language. The
example shows 3 router instances named: main, router-1 and router-2, that is connected
to a bridge in the main instance by 3 sets of epair devices, epair0, epair1 and epair2,
each having an “a” and a “b” interface. The “a” interfaces are connected to each router
instance and the “b” interfaces are connected to the bridge device. Notice the bridge-
cmd2 line containing 2 bridge commands, which is introduced to be able to create
bridges with a high number of ports.
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15 lines of bridge-cmdN: in the specification. Each of these can hold several bridge
commands, only limited of the capability of the ifconfig(8) program as the lines are
fed directly to the argument line like this: ifconfig bridgeN <bridge-cmdN>,
each line at a time.

We are confident that the language is general enough to be able to express the router
instances that are needed in network setups as we have no restrictions in the language
except the one mentioned in the bridge-statement mentioned.

4.6 The proposed XORP virtual router architecture

After having analyzed the XORP architecture and the properties of virtual images we have
actually two versions that we propose: A “Quick” version with a high degree of reuse which
can be used as a first test version and a “General” design version that have a more genuine
infrastructure in place for future developments, mainly featuring communication facilities
between different XORP router instances and a better integrated management interface
where the router administrator connects to the main router instance and from there controls
all instances of the router.

The virtual XORP router implementation utilizes the FreeBSD virtual network envi-
ronment with a virtual network instance (jail) for each virtual instance of the XORP router.
Both proposed solutions of the XORP virtual router architecture uses jails with the vnet
and the persist property set and a separate routing table associated.

The initial “Quick” version of the XORP virtual router architecture we propose are
depicted in figure 4.5 and explained in section 4.6.1 and the “General” design is depicted
in fig. 4.6 and explained in section 4.6.3 below.

4.6.1 The proposed “Quick” XORP virtualized router architecture.

The “Quick” XORP virtual router architecture consists of a main XORP router instance that
is residing in the virtual network environment where the XORP router starts up. Whether
this is the default FreeBSD kernel instance or a virtual FreeBSD kernel instance (jail) is
not important as long as the devices needed (configured) by the XORP router is available
in the network environment where XORP is started.

During our analysis have created an solution with a high degree of module reuse from
the single instance XORP router. We have have introduced a new module named xorp-boot
that is responsible for the initial setup of the XORP virtual environment and start up of
the virtualized XORP router instances. We describe the xorp-boot boot process further in
section 4.6.2 below.

The new bridge and epair devices is controlled by the xorp-boot module. The xorp-
boot module initializes the bridge and the epair instances in the main XORP router instance
and relocate epair interfaces to the relevant virtual XORP router network environments,
according to the configuration file.

After the xorp-boot module has initialized the virtual XORP router environment, the
XORP virtual router instances are started in each prepared virtual netowork instance. In
each virtual XORP router instance, we reuse the complete XORP single user module setup,
so the rtrmgr in each XORP instance starts up as usual, builds the in-memory configuration
tree that controls the router, and so on.

4.6.2 Booting of XORP with virtual instances with xorp-boot.

The xorp-boot module is responsible for starting up our initial version of XORP with virtual
instances. It is necessary as we have reused the rtrmgr module from the single instance
XORP router as-is for the normal XORP router operation in the main and virtual XORP
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Figure 4.5: The proposed “Quick” XORP virtualized router architecture. The XORP
parent instance creates and controls the virtual instances according to the configura-
tion file. Each virtual router instance resides in a dedicated FreeBSD jail and have a
dedicated instance of the IP stack. The bridge and epair devices resides in the
main router instance (the parent jail). Epair interfaces and bridges are used to
connect the virtual interfaces in each jail to the NICs. The bridge device depicted is
connected to the virtual router instances with epair interfaces (not depicted).
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router instances. We believe that the xorp-boot module can be implemented as a shell or
Perl script for the initial version.

The xorp-boot module are responsible for the following tasks:

• The xorp-boot module reads the global XORP configuration file and identifies names
of main and virtual router instances.

• The xorp-boot module searches the configuration file and identifies what interfaces
and network devices are used by each virtual router instance configured. This infor-
mation is used to prepare the virtual network instances with the correct configuration
of devices before starting the XORP router.

• The xorp-boot module splits the global configuration file into a file for each XORP
router instances into files with filenames identified by having a part of the router
instance-names included, e.g. the configuration for the virtual-router named router-1
is named xorp-virtual-router-1 and is located in the same directory as the
global configuration file.

• The xorp-boot module creates a virtual network environment jail instance for each
virtual XORP router instances identified. The main XORP router instance will reside
in the current network environment.

• The xorp-boot module creates bridge and epari devices as specified in the global-setup
configuration clause and relocates the epair interfaces and physical network interface
card interfaces NICs into the virtual network instances where they are specified by
the configuration file.

• The xorp-boot module starts up an instance of the XORP single instance rtrmgr in
the main and in each virtual XORP router instance with an argument of the relevant
configuration file that configures each router instance.

• The xorp-boot module merges the individual configuration files back into the global
configuration file on a given signal from the administrator.

• When the XORP router system is going to be shut down, the xorp-boot module stops
the XORP processes, moves interfaces back to the main XORP instance, removes
virtual network environment to shutdown the virtual XORP instances and restore the
host to the state it had when before staring XORP.

We believe that the xorp-boot module will provide the glue that creates the first version
of the XORP router with support for virtual router instances. The administration of the
virtual XORP router and the virtual instances suffer greatly from this by forcing the user to
administrate each router instance individually from a xorp shell in each instance, but this
will be established with the redesign of the rtrmgr as a distributed module and the XRL
router described earlier.

4.6.3 The proposed “General” virtual XORP routing architecture
The “General” design depicted in figure 4.6 differs with having a changed rtrmgr and IPC
finder module, and a new XRL router module introduced. The rtrmgr is responsible for
boot of the virtualized XORP router instances and the xorp-boot module is not used in this
version.

The functional aspects in the “General” architecture differs in the following areas: The
XRL router module establishes communication channels between the main and the virtual
XORP router instances enabling bi-directional XRL communication between all virtual
router instances and the main router instances. The XRL routing functionality enables the
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communication between all XORP instances via the XRL router node in the main XORP
instance.

The enhanced IPC finder functionality enables XORP modules to resolve XRL targets
in remote router instances by applying either the name of the instance or a wild-card name
for searching registered XRL targets in either a specific virtual XORP instance or globally
in all XORP router instances.

Finally an extension to the rtrmgr module that enables it to be a distributed module,
with instances in all XORP instances will open up for having a global in-memory con-
figuration tree experience. Whether it will be implemented as a true global in-memory
configuration tree living entirely in the main XORP instance or it will be implemented as
a truly distributed in-memory configuration tree where each subtree lives in the distributed
rtrmgr instance in each router instance. We have not analyzed this part thoroughly enough
to give a final answer of what solution would be the most beneficial for the design, but we
tend to prefer the distributed version of the in-memory configuration tree to the non dis-
tributed solution, but MPLS or portability reasons may change the picture when analyzed
thoroughly.

4.6.4 Summary of the design proposals
We have presented 2 slightly proposals for the virtual XORP router architecture, the “Quick”
design and the “General” design. They differ in the way that the “Quick” design reuse all
parts from the single instance router and we introduce a new xorp-boot module with the
responsibility of initializing the virtual router setup according to the configuration file. and
the “General” design proposal where a few central modules have been redesigned with
some added functionality which provides a general solution with a functioning router with
a well structured user interface and integrated infrastructure for the internal support and
administration of the virtual router instances.

We believe that the “Quick” design may be used to as an intermediate step for evaluation
of the design requirements for a like the “General” design.
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Figure 4.6: The “General” XORP virtualized router architecture. The rtrmgr in the
main XORP instance create and controls the virtual instances according to the configu-
ration. Each virtual router instance resides in a dedicated FreeBSD jail with a dedicated
instance of the virtual network environment. Epair connectors and bridges are used to
connect the virtual interfaces in each jail to the NICs. The bridge device depicted is
connected to the virtual router instances with epair interfaces (not depicted.)
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Chapter 5

MPLS in the XORP architecture

5.1 Introduction.
Someday MPLS (Multi Protocol Label Switching) will be considered being a part of the
XORP feature set. The way we provide virtual router instance support in this project are
not close to the traditionally solutions provided in routers, which is a reason to take a short
glimpse of how MPLS does fit into the architecture of this project.

MPLS is a set of technologies that provide a set of tools to manipulate IP traffic, one of
the more used applications of MPLS is to create MPLS based virtual private networks. Se
introduction to VPN in section 1.2 and to MPLS in section 1.3.1.

MPLS operates with insertion of labels in front of each IP packet, that is used for routing
of the packet, instead of the destination IP address. This makes MPLS operate just below
the IP layer of the network protocol. Some people calls MPLS for a layer 2,5 protocol, as
it operates between layer 2 and layer 3 in the ISO protocol specification.

When the MPLS labeled packet reaches its destination router the label is “popped” of
and normal IP routing is used for the last part of the way to the destination host. Usually the
MPLS part is only inside one administrative network domain, e.g. an IP network provider
or inside a larger company network.

5.2 MPLS analysis
MPLS enabled network is typically a network which is managed inside an administrative
network domain. MPLS labels has only link-local significance and labels are typically
switched at each MPLS switching/forwarding point, often with hardware support from the
forwarding engine (FE) part of the router.

When MPLS is going into the XORP design, we will have to be able to consider the
layering of MPLS and VLAN function blocks. (see figure 5.1). XORP and FreeBSD today
only knows about VLANs and we believe1 that an MPLS link can be transmitted over a
VLAN link, so we need to have this option in the design. If VLAN should be transmitted
over an MPLS link it will have to be implemented with help of an encapsulation protocol.

We see two main categories of MPLS packets entering our router via links connected
to it. MPLS packets that have to be relabeled and forwarded into another line, and MPLS
packets that has to be delivered to an interface or non-MPLS network connected to the
router.

Packets that have to be relabeled and forwarded in the MPLS domain, are re-labeled
with a new label from the label distribution protocol (LDP) system, no IP routing tables are

1This is based on the fact that MPLS is layered above the VLAN layer in the ISO protocol. We haven’t
investigated this further in this project.
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required here. Packets that have to exit (or enter) the MPLS domain has to be delivered to
an Interface at the router. This interface has to reside in the IP realm that the IP address
plan belongs to - e.g. the IP interface needs to be connected to a virtual network stack
configured to hold RIB and the (kernel) IP routing table for the relevant IP realm.

Packets that are re-labeled and forwarded can be processed in a MPLS kernel module.
LDP support will likely be implemented as a xorp module. The general use case will have
one MPLS forwarding instance, but as depicted in 5.1 this possibility is a feature of all
virtual router instances.

With the above in mind the XORP architecture design will be quite different from
the ”xorp-without-MPLS” design, as there is not a direct relation between virtual kernel
images and IP-network (IP realms) configuration in the MPLS world. Despite we need to
have MPLS inside some router instance, and MPLS is situated between the IP-layer and
the Ethernet VLAN layer it will need to be implemented by a kernel module in FreeBSD,
that can provide the forwarding functionality (labeling and relabeling of MPLS packets that
enters and leaves the router), and user land processes that provide the management support
of the MPLS labels.

We have provided this figure where MPLS is inserted as a layer between the IP and the
VLAN layer, and is existing in each virtual router instance. The MPLS layer depicted is the
one responsible for the labeling and relabeling of MPLS packets, the MPLS administrative
modules are not depicted on the figure. It resides as a user land processes in the main or in
the virtual XORP router instances.

5.3 Summary of the MPLS analysis
We have provided a short analysis of MPLS in the XORP architecture. It shows the archi-
tectural location of MPLS in the router model and added a few comments to the solution. It
have to be further analyzed how the implementation in the FreeBSD kernel would be most
beneficial and effective done.

MPLS is an important functionality to have in routers which are a part of larger modern
IP networks, and if XORP is going to have its place as a research platform for routers and
routing protocols it will be an important issue for XORP to be able to communicate with
MPLS network infrastructure.
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Figure 5.1: MPLS in the XORP Virtualized architecture. The MPLS layer between
the IP and the VLAN layer is responsible for labeling and relabeling of MPLS packets
passing the router. MPLS packets in transit only need relabeling before sent off to the
next link. MPLS packets entering or leaving the MPLS domain needs a IP routing in-
stance that is provided by a virtual XORP router instance in the IP realm they belong to.
The epair and bridge devices are residing in the main XORP router instance. The
bridge device depicted is connected to the virtual router instances with epair interfaces
(not depicted).
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Chapter 6

Conformability between the
FreeBSD IP stack and the
suggested XORP architecture

After having worked with the FreeBSD virtual network stack (VNET) and XORP during
the project we will now try to evaluate the conformability of the two. Based on this is
an entirely theoretical project so we can not use quantitative facts as lines of C++ code or
number of C++ functions required in the implementation. We will instead try to list issues
we have found and worked around during the project and give an evaluation based on this.

6.1 FreeBSD related issues.
The FreeBSD virtual network environment is an almost complete virtualization of the
FreeBSD kernel making the FreeBSD kernel able to invoke virtual kernel instances much
like instantiating a C++ Class as an object instance.

The only thing vi did not find direct in the FreeBSD virtual network environment system
is the ability to create communication from a child virtual network instance and back to the
parent network instance. This is a feature created by design, and not a flaw of the system.
This “missing” functionality is the only reason for implementing the XRL router module.
That is responsible for creating this missing feature.

6.2 XORP system related issues.
On the XORP side we of cause had to create solutions for supporting the Virtual XORP
router instances which XORP did not have before. We will list the XORP issues found
here:

• Xorp needed infrastructure to communicate between virtual router instances where
we, at the same module, implemented the solution to work around of the restriction
of not being able to create communication from a child network instance and back to
the parent network instance.

• Xorp also needed infrastructure to distribute the global router configuration to the
child / virtual router instances, which we solved in the “Quick” version of our design
by creating individual files in the shared file system of the XORP router instances,
and in the “General” design solution we solved this by redesigning the central XORP
administrative process the rtrmgr into a distributed process with an peer module in
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each XORP router instance, responsible of control and communication with local
XORP modules in each router instance and for communicating with the central rtr-
mgr instance in the main XORP router instance.

• XORP needed support for two FreeBSD network devices the bridge and the epair to
be able to connect virtual router instances with each other and the outside world.

• The XORP “Quick” design a new module in the main XORP router instance to ad-
minister the startup and shutdown of the XORP virtual router instances according to
the configuration file and a few other router infrastructure administrative tasks. In
the “General” design this functionality has been build into the distributed version of
the rtrmgr module

All the XORP issues listed except the epair and bridge devices is derived from
the new virtual functionality which we have brought into the XORP router. This is hard to
blame. FreeBSD for.

6.3 Summary of conformability.
To summarize the conformability study we have had way fewer obstacles than expected
prior to the start of the project. We had worked our way through the FreeBSD network
environment and the XORP system architecture and been able to create a “quick” solution
with only a handful of changes to the original XORP, enabling a fast prototyping track, that
can provide a better understanding for the “general” solution that required a redesign of a
few modules. All the issues that have to be redesigned here is connected with enabling of
communication between the various instances of the XORP router.

The high modularity and general design of the XORP code especially with respect to
the XORP Inter Process Communication (IPC) feature based on generic eXternal Resource
Locators (XRL) resulted in a analysis that only revealed few issues.

Finally based on the argumentation above we can state that the conformability between
the FreeBSD virtual network environment and the XORP router system is somewhere be-
tween good and perfect on a line that goes from poor to perfect. We know this isn’t an
exact metric, but with the samples we have stated above we believe we had provided a
good impression of the overall really good conformance between the two systems.
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Conclusion

During this project we have analyzed the features of the FreeBSD virtual network stack
and crafted two versions of architectural designs for virtualizing the XORP router. From
this process we have achieved a good understanding of the requirements that the XORP
router with support for virtualized router instances has to the network stack and to the host
operating system.

We have proposed an enhanced version of the XORP router configuration language sup-
porting the configuration of virtual router instances including the bridge and epair network
devices. The full configuration language from the single instance XORP router is reused
in each instance of the virtual XORP router, and new functionality is located in a new
global-setup configuration language construct. In the “Quick” design we have pro-
posed a interpretor for this, which is located in the xorp-bootmodule. The xorp-boot
module is also responsible for the initialization of the XORP router and virtual instances
during startup and for decommissioning the virtual instances and network devices and re-
establishing the host to its initial state when the router is shut down.

We have designed two versions of the architecture a “Quick” and a “General” design
solution. Both implementing the new configuration language. The two solutions differs
in two places. The user interface experience and the internal communication between the
main and the virtual XORP router instances.

The “Quick” version of the design reuses the complete set of modules from the single
instance XORP router in each virtual router instance. The global configuration file is split
into several files, one for each XORP instance being started, each containing the config-
uration for an instance of the router, in the single instance XORP configuration language
syntax. Communication from the xorp-boot module in the main xorp instance to the other
xorp instances is done via the configuration file and by executing jexec(1) commands
from the main XORP router instance into the rtrmgr or xorpsh modules in the virtual (child)
router instances.

The “General” version of the design also reuses a large number of the single instance
XORP modules unchanged, except the rtrmgr and IPC finder which has added extra func-
tionality and a extra new module named XRL router that has been introduced. These
changes enables the bi-directional XRL communication between all router instances and
the IPC finder to resolve XRL targets in foreign router instances. These features enables
the bi-directional user communication to all XORP virtual router instances from a single in-
stance of the xorp shell xorpsh and the exchange of configuration data between modules via
IPC channels, instead of using the simple file based method we use in the “Quick” version
of the design. Furthermore it establishes infrastructure to the centrally located SNMP man-
agement agent and future implementations of features that needs communication between
the virtual router instances. e.g. import/export of routers between IP realms.

Al together we believe we have presented a strong “General” design proposal, that
utilizes the features of both XORP and the FreeBSD virtual networking environment in a
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efficient way, and a proposal of a usable “Quick” solution to create a working setup for
evaluating the details of specific design details before implementing the next step of the
evolution in XORP with support for virtual router instances.

After we proposed the design solutions we have analyzed the conformability between
the FreeBSD virtual network environment and the XORP router design with support for
virtual router instances and fund that these two entities have a degree of conformability
with each other between good and perfect on a line from poor to perfect.

We have provided a short analysis and design proposal for how MPLS would fit into
our proposed architecture for the parts of MPLS closest to the forwarding engine, which
we find are the most interesting question in respect to this project.

As an introduction to the project we have written a short introduction to the FreeBSD
virtual network environment in chapter 2 explaining the basic functionality of the XORP
router, and written a more detailed section of selected commands related to the FreeBSD
virtual network environment which is available in appendix B. We have also provided an
introduction to the XORP project in chapter 3 which is an updated and a cut-down quick
summary of a similar section from our master thesis from marts 2008 [5].

It is our hope that this work will be used as an input for the discussion of virtualizing
the XORP router when this comes up in the XORP project.

Kristen Nielsen
Valby, Denmark.
30. August 2010.



Appendix A

The OSI model

The International Standards Organisation (ISO) have in the 1980s defined the OSI (Open
Systems Interconnect) 7-layer model, that describes and categorizes network protocols.
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Figure A.1: Global and Local NAT definitions.



Appendix B

Selected FreeBSD utilities

B.1 The jail(8) utility

The (VNET) features has been integrated in the jail(8) utility. This enables the jail
utility to handle the new features at the same time as a jail process environment is created.

The jail(8) command is used for the creation -c, modification -m and removing
-r of jails.

Recently functionality for managing vnet instances has been added. The jail(8)
command identifies jails by jid (jail-id.) which all jails are identified by. The jid is
automatically set and can be specified as a parameter. Jails can be given an name, that acts
like an alias for the jid. If no name is specified for a jail the jid is assumed.

A number of system variables can be specified at the jail(8) command line or can
be allowed to be set from inside the jail itself using allow.* MIB options at the jail
command line. The list includes system settings like hostname, domainname, hostid
and hostuuid. Jails can be hierarchical allowing jails to be created inside jails. This
feature can be controlled by the number of child jails allowed.

Jails can be restricted to a specified range op IP addresses by the ip4.addr and
ip4.addr parameters, or can be set up so it can bind to any IPv4 or IPv6 family IP
addresses available (configured) on the system. The first address of each family will be the
default binding address for processes not specifying any other address.

More information of the jail(8) utility can be found in the FreeBSD manpage [28].

B.2 The ifconfig(8) utility

The ifconfig(8) utility handles network interfaces. Ifconfig have an extensive list of
options and uses, we will just mention the options related to jails and to the examples shown
here.

The basic operation of ifconfig(8) is to create network devices or interfaces, and
instrument these with suitable parameters such as IP addresses for an Ethernet interface.
Other uses is to create epair(4) nodes and if bridge(4) devices. Ifconfig can also
create and associate (move) an interface with/into a jail, this is particular interesting when
moving one end of an epair interfaces into another jail with the purpose of connecting
these together.

• The vnet <jail-id> option moves an interface from the current nework envi-
ronment into the jail identified by the jail-id parameter if the jail has a virtual net-
work stack. The interface will disappear from the current network environment and
be available in the jail.
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• The parameter -vnet <jail-id> option for ifconfig removes the interface from
the jail identified by the jail-id and places it in the current network environment.

• The epair parameter creates a set of logical Ethernet interfaces with a cross-over
network cable between them. The epair interfaces can be used to crate internal con-
nections between network entities such as jails and bridges, and can even connect
interfaces in different jails. This is done by movint one end of the epair interfaces
to another jail instance with the ifconfig command.

• the bridge option is used to create a bridge(4) device. Bridges behaves like real
Ethernet bridges and are controlled by options to the ifconfig(8) utility by the
following options: addm <interface> adds an interface to a bridge, deletem
removing an interface from a bridge.

More information of the ifconfig(8) utility can be found in the FreeBSD man-
page [29].

B.3 setfib(1) utility
The setfib(1) utility is used to associate a process with a non-standard routing table.
When a process is associated to a given routing table all descendants to the process is
associated with the same process table. Routing tables are named from 1 and to the number
of supported routing tables in the system. The supported number can be set either with
a option ROUTETABLES=<number> kernel configuration file option, or configured
at boot time with the net.fibs=<number> line in the /boot/loader.conf file.
More information of the setfib(1) utility can be found in the FreeBSD manpage [30].

B.4 The vimage(8) utility

The functionality of the vimage(8) utility has been fully integrated into the jail(8)
utility. The vimage(8) utility is now moved to the /usr/src/tools/tools/vimage
and can be installed if needed for backward compatibility.

The options to the vimage(8) utility are:

• The default operation of vimage(8) is to print the current virtual image name (of
the shell executing vimage(8).

• -c vi name [options] Creation and deletion of new virtual images. Options
can be e.g. chroot <path> to make processes in the new virtual image chrooted(2)
to the path. Virtual images are not chrooted(2) by default, and lives in the same
file system as the parent virtual image.

• -i vi name interface [target interface] Network interfaces can be
moved from one virtual image into another virtual image.

• vi name [command] Processes can move themselves from their current virtual
image to any child virtual images. Processes can not move themselves to their parent
or sibling processes. (The design is still being discussed so changes may appear).

• -l vi name Lists the existing virtual images, options and other information of
each virtual image instance.

• -m vi name Modifies the parameters of a virtual image with the name vi name,
using the same syntax as the -c form of the command.
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• -d vi name Deletes a virtual image. Virtual images can be deleted when no pro-
cesses exists in the virtual image to be deleted. All interfaces except loopback inter-
faces will be reassigned to the parent virtual image.

• The security model of the API created to maintain the vimage, has been designed
to only allow the root process user, to perform any task at the system call interface,
even the read only operations.

The vimage(8) utility manages and operates the Virtual Network Stack of the FreeBSD
kernel. The utility is capable of creating, listing and deleting of virtual images (vimages),
start up commands inside virtual images, move the console to child vimages, move inter-
faces from the parent vimage into virtual images and back again and change various options
and parameters connected to each vimage. Options include limitation of CPU usage, max-
imum number of child images and existing processes and also a possibility to isolate a
virtual image into a chroot(2) environment (The root file system of the child virtual
image is locked into a subdirectory of the parents file system).

A short example of using the vimage(8) utility is given here as an example of basic
use of the program:

usbbsd(1)# vimage -l
"default":
84 processes, load averages: nan, nan, nan
CPU usage: (0.00% user, 0.00% nice, 0.00% sys, 0.00% intr)
CPU limits: min 0.00%, max 100.00%, weight 0, no intr limit
No proc limit
Sockets (current/max): 91/0
4 network interfaces
usbbsd(2)# vimage -c h0
usbbsd(3)# vimage -l
"default": [rest of "Default" is deleted]
"h0": [rest of "h0" is deleted]
usbbsd(4)# vimage h0
Switched to vimage h0
(5)# vimage -l
"h0":
1 processes, load averages: nan, nan, nan
CPU usage: (0.00% user, 0.00% nice, 0.00% sys, 0.00% intr)
CPU limits: min 0.00%, max 100.00%, weight 0, no intr limit
No proc limit
Sockets (current/max): 1/0
2 network interfaces, parent vimage: "default"
(6)# exit
exit
usbbsd(7)# vimage -l
"default": [rest of "Default" is deleted]
"h1": [rest of "Default" is deleted]

Figure B.1: Vimage(8) intro tour. The commands are numbered from (1) to (7).
Notice that the command number (4) vimage h0 starts up a new sub shell in the
virtual image “h0” (notice the change of the prompt) and when exiting this sub shell in
command (6) exit we return back into the parent image named “default”.

More detailed information about the vimage(8) utility is available at the vimage(8)
manual page [31].

B.5 The jexec(8) utility
The jexec(8) utility executes a command within a jail. Jexec(8) takes an argument
of a jail-id (jid) and an optional user name (from host environment or the jailed environ-
ment and runs a command with that users id in the given jail. More information of the
jexec(8) utility can be found in the FreeBSD manpage [32].
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B.6 The jls(8) utility
The jls(8) command lists the existing jails visible for the environment where it is exe-
cuted. If the jls(8) command is executed at the host environment, all jails at the host is
listed, if the jls(8) command is executed inside a jail, the jails visible (e.g. descendants
of this jail) is listed. More information of the jls(8) utility can be found in the FreeBSD
manpage [33].

B.7 The epair(4) device
The epair is a pair of Ethernet-like software interfaces, which are connected back-to-
back with a virtual cross-over cable. The two interesting property with epair interfaces is
that they can be assigned IP and MAC addresses like other interfaces, and the interfaces can
be moved to other network environments, making epairs an important utility to connect
different network environments together.

Epairs are a set of software cross-over Ethernet cables between interfaces in the host.
The basic intend is to provide connectivity between two virtual network stack instances.
As the epair are implemented as two Ethernet interfaces these needs to have a network
address configured. A locally administered address by default, this is only guaranteed to be
unique within one network stack. Care should be taken when connecting epairs between
different virtual network stacks.

Epairs are assigned a number at creation time, and each end of an epair are identified
by the letter “a” or “b”. The first created epair will then have the two interfaces (ends)
named epari0a and epari0b.

Epairs are created by the ifconfig command which creates a set of epairs.

ifconfig epair create

darkron# ifconfig epair create
epair0a

darkron# ifconfig
epair0a: flags=8842<BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 02:c0:a4:00:06:0a
epair0b: flags=8842<BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500
ether 02:c0:a4:00:07:0b

More information of the epair(4) utility can be found in the FreeBSD manpage [34].

B.8 The if bridge(4) device
The if bridge(4) device is an software Ethernet bridge, capable of bridging Ethernet
network interfaces together. The if bridge(4) bridge module device provides the device
named: bridge(4) to the kernel.

The bridge(4) device is created with the ifconfig(8) utility. The bridge(4)
devices is confined entirely within a (single) network environment. The if bridge(4)
connects standard network devices such as epair(4), Network Interface Card devices
(NICs) and host network interfaces, tunneling devices etc existing in the same network
environment as the bridge itself.

The if bridge(4) device also supports the Spanning Tree Protocol (STP) and can
be used as a endpoint for tunnel interfaces.

More information of the bridge(4) utility can be found in the FreeBSD manpage [35].



Glossary

ATM Asynchronous Transfer Mode

BGP Border Gateway Protocol

cost Cost of a route. A typeless numeric value used to differentiate routes when more
possible routes is available. The lower cost the better is the route.

DLCI Data Link Circuit Identifier

FEC Forwarding Equivalence Class

FIFO-Queue First-In - First-Out queue. A queue type where the first element inserted into the
queue will be the first element apreaing at the output. Elements will be queued if
more elements are written to the queue than are read from the queue.

FTN FEC to NHLFE Map

IANA Internet Assigned Numbers Authority. http://iana.org

IGP Interior Gateway Protocol

ILM Incoming Label Map

IP Internet Protocol

LAN Local Area Network.

layer 2 The protocol layer under layer 3 (which therefore offers the services used by layer
3). Forwarding, when done by the swapping of short fixed length labels, occurs at
layer 2 regardless of whether the label being examined is an ATM VPI/VCI, a frame
relay DLCI, or an MPLS label.

layer 3 The protocol layer at which IP and its associated routing protocols operate link layer
synonymous with layer 2

LDP Label Distribution Protocol

L2 Layer 2 L3 Layer 3

LSP Label Switched Path

LSR Label Switching Router

metric same as cost. The word indicates a distance to a route, but metric is used in exactly
the same way as cost. Normally a router either uses the term cost or the term metric.

MPLS MultiProtocol Label Switching

MPLS domain A contiguous set of nodes which operate MPLS routing and forwarding and which
are also in one Routing or Administrative Domain
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MPLS label A label which is carried in a packet header, and which represents the packet2̆019s
FEC

MultiProtocol Label Switching An IETF working group and the effort associated with the working group

NHLFE Next Hop Label Forwarding Entry

OSPF Open Shortest Path First. A link state routing protocol.

RADIUS Remote Authentication Dial In User Service

SVC Switched Virtual Circuit

SVP Switched Virtual Path

TACACS Terminal Access Controller Access-Control System.

TTL Time-To-Live

UUID Universally Unique Identifier

VC Virtual Circuit

VCI Virtual Circuit Identifier

VLAN Virtual Local Area Network. A technology than enables more 802.3 (Ethernet) Local
Area Networks at the same switch or cable.

VLAN Trunk VLAN Trunk is an interface with several VLANs configured. Traffic flows in and of
the interface in decidated channels. Each af these channels are called a VLAN.

VP Virtual Path

VPI Virtual Path Identifier

VPI/VCI A label used in ATM networks to identify circuits

virtual circuit A circuit used by a connection-oriented layer 2 technology such as ATM or Frame
Relay, requiring the maintenance of state information in layer 2 switches.

WAN Wide Area Network.
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