Jails: Confining the omnipotent root.

Poul-Henning Kamp < phk@FreeBSD.org>
Robert N. M. Watson <rwatson@FreeB3D.org>
The FreeBSD Project

ABSTRACT

The traditional UNIX security model is simpleutb inexpressve.
Adding fine-grained access control impes the epressveness, bt
often dramatically increases both the cost of system management and
implementation compléty. In environments with a more complenan-
agement model, with dejeion of some management functions to-par
ties under &rying dgrees of trust, the base UNIX model and most natu-
ral extensions are inappropriate at be¥there multiple mutually un-
trusting parties are introducedinappropriate” rapidly transitions to
“ nightmarish’, especially with rgards to data intgrity and prvacy pro-
tection.

The FreeBSD'Jail’”’ facility provides the ability to partition the operat-
ing system evironment, while maintaining the simplicity of the UNIX
“root” model. InJail, users with pvilege find that the scope of their
requests is limited to the jail, alling system administrators to deée
management capabilities for each virtual machinerenment. Creating
virtual machines in this manner has maotential uses; the most popu-
lar thus &r has been for pvading virtual machine services in Internet
Service Pruider ewvironments.

1. Introduction

The UNIX access control mechanism is designed for amagmment with tvo types
of users: those with, and without administratmrivilege. Within this framevork, every
attempt is made to pvae an open system, aling easy sharing of files and ir{gro-
cess communicationAs a member of the UNIXaimily, FreeBSD inherits these secu-
rity properties. Users of FreeBSD in non-traditional UNIXwronments must balance
their need for strong application support, high rmekvperformance and functionality

This work was sponsored bittp://www.servetheweb.com/ and donated to
the FreeBSD Project for inclusion in the FreeBSD P8eeBSD 4.0-RELEASE as
the first release including this coddlow-on work was sponsored by Safeport Net-
work Serviceshttp://lwww.safeport.com/

and lav total cost of wnership with the need for alternadi scurity models that are
difficult or impossible to implement with the UNIX security mechanisms.

One such consideration is the desire to ghtée some (bt not all) administratie
functions to untrusted or less trusted parties, and simultaneously impose system-wide
mandatory policies on process interaction and sharktgempting to create such an
ervironment in the current-day FreeBSD securitwiemmment is both difcult and
costly: in may cases, the lrden of implementing these policiedl$ on user applica-
tions, which means an increase in the size and caihplef the code base, in turn
translating to higher delopment and maintaennce cost, as well as leaslb flexibil-
ity.

This abstract risk becomes more clear when applied to a practical,ardeletam-
ple: mary web service praders turn to the FreeBSD operating system to host customer
web sites, as it prades a high-performance, neivk-centric serer ewvironment. Hav-
eva, these proiders hae a imber of concerns on their plate, both in terms of protect-
ing the intgrity and confidentiality of theirwn files and services from their customers,
as well as protecting the files and services of one customer from (accidental or inten-
tional) access by grother customerAt the same time, a prwler would like to provide
substantial autonomy to customers, wlloy them to install and maintain theiwvo soft-
ware, and to manage theiwa services, such as web sew and other content-related
daemon programs.

This problem space points strongly in the direction of a partitioning solution, in which
customer processes and storage are isolated from those of other customers, both in
terms of accidental disclosure of data or process informatignalbo in terms of the
ability to modify files or processes outside of a compartmBeiegation of manage-
ment functions within the system must be possikblg,not at the cost of system-wide
requirements, including ingeity and prvacy protection between partitions.

However, UNIX-style access control mek it notoriously difcult to compartmen-
talise functionality While mechanisms such as chroot(2)ide a modest el com-
partmentalisation, it is well kmen that these mechanismsvbeaserious shortcomings,
both in terms of the scope of their functionalagd efectiveness at what tlyeprovide
[CHROOT].

In the case of the chroot(2) call, a processibility of the file system name-space is
limited to a single subtreeHowever, the compartmentalisation does natemd to the
process or netarking spaces and therefore both obagon of and interference with
processes outside their compartment is possible.

To this end, we describe thewd-reeBSD “Jail” facility, which prosides a strong
partitioning solution, leeraging &isting mechanisms, such as chroot(2), to whiscef
tively amounts to a virtual machinev@émonment. Processeas a jail are proided full
access to the files that thenay manipulate, processes yheay influence, and netwk
services thg can male use of, and neither access nor visibility of files, processes or net-
work services outside their partition.

Unlike aher fine-grained security solutions, Jail does not substantially increase the
policy management requirements for the system administragaach Jail is a virtual

FreeBSD ewironment permitting local policto be independently managed, with much
the same properties as the main system itself, making Jail easy to use for the administra-
tor, and far more compatible with applications.

2. Traditional UNIX Security, or, ‘‘God, root, what difference?" [UF].

The traditional UNIX access model assigns numeric uids to each user of the system.
In turn, each processotvned’ by a wer will be tagged with that userud in an
unforgeable mannerThe uids ser two purposes: first, thedetermine hw discre-
tionary access control mechanisms will be applied, and secoydarthesed to deter
mine whether special pileges are accorded.

In the case of discretionary access controls, the primary object protected isTadile.
uid (and related gids indicating group membership) are mapped to a set of rights for
each object, courtesy the UNIX file mode, ifeef acting as a limited form of access
control list. Jail is, in general, not concerned with modifying the semantics of discre-
tionary access control mechanisms, although there are important implications from a
management perspecti

For the purposes of determining whether specialilpges are accorded to a process,
the check is simpleis the numeric uid equal to 0'?’'If so, the process is acting with
“ superuser pwileges’, and all access checks are granted, fiectfalloving the process
the ability to do whateer it wants to.

For the purposes of human a@nience, uid 0 is canonically allocated to thedt”
user[ROOT]. For the purposes of jail, this behaur is etremely rel@ant: mary of
these pwileged operations can be used to manage system dwarémd configuration,
file system name-space, and special netvoperations.

Marny limitations to this model are immediately clear: the root user is a single, con-
centrated source of priege that is gposed to manpieces of softare, and as such an
immediate taget for attacks.n the erent of a compromise of the root capability set, the
attacler has complete controver the system.Even without an atta&k, the risks of a
single administratie account are serious: del@ing a narrav scope of capability to an
inexperienced administrator is fidult, as the granularity of dejetion is that of all sys-
tem management abilitiesThese features makihe omnipotent root account a sharp,
efficient and gtremely dangerous tool.

The BSD &mily of operating systems V& implemented the'secureleel’” mecha-
nism which allevs the administrator to block certain configuration and management
functions from being performed by root, until the system is restarted and brought up
into single-user modeWhile this does pndde some amount of protection in the case
of a root compromise of the machine, it does nothing to address the needdetiatele
of certain root abilities.

1 ... no matter he patently stupid it may be.

3. Other Solutions to the Root Poblem

Many operating systems attempt to address these limitations kidprg fine-grained
access controls for system resourf@BA]. These dbrts vary in dgrees of success,
but aimost all sufer from at least three serious limitations:

First, increasing the granularity of security controls increases the catypié the
administration process, in turn increasing both the opportunity for incorrect configura-
tion, as well as the demand on administrator time and resouirtesary cases, the
increased compikity results in significant frustration for the administratewhich may
result in two disastrous types of polrc “all doors open as & too much trouble’ and
“ trust that the system is secure, wheraitt ft isnt”.

The etent of the trouble is best illustrated by thetfthat an entire niche industry has
emepged preiding tools to manage fine grained security conflods).

Second, usefully ggegaing capabilities and assigning them to running code and
users is ery difficult. Mary privileged operations in UNIX seem independeni, &re
in fact closely related, and the handing out of onélpge mayin €fect, be transie
to the mawg others. Br example, in some trusted operating systems, a system capability
may be assigned to a running process tonaitato read aw file, for the purposes of
backup. Havever, this capability is, in ééct, equalent to the ability to switch to gn
other account, as the ability to accesg fie provides access to systeraykng material,
which in turn preides the ability to authenticate asyarser Similarly, marny operating
systems attempt to gegae management capabilities from auditing capabilitiesa
number of these operating systemswéar, “management capabilitieéspermit the
administrator to assigrauditing capabilities’to itself, or another account, circusmt-
ing the sgregation of capability

Finally, introducing ne/ security features often wolves introducing ng security
management APIsWhen fine-grained capabilities are introduced to replace the setuid
mechanism in UNIX-lile gperating systems, applications thatviwesly did an ‘appro-
priateness checkto se if thgg were running as root beforexeeuting must nas be
changed to kne that theg need not run as rooin the case of applications running with
privilege and recuting other programs, there iswma rew st of prvileges that must be
voluntarily given up before e&ecuting another programThese change can introduce
significant incompatibility for xsting applications, and makiife more dificult for
application deelopers who may not benare of differing security semantics on fiif-
ent systemgrosiX1e]

4. TheJail Partitioning Solution

Jail neatly side-steps the majority of these problems through partitioReufper than
introduce additional fine-grained access control mechanism, we partition a FreeBSD
environment (processes, file system, nativresources) into a managemenviem-
ment, and optionally subset Jaiveonments. Indoing so, we simultaneously maintain
the &isting UNIX security model, allwing multiple users and a pileged root user in
each jail, while limiting the scope of rostectivities to his jail. Consequently the
administrator of a FreeBSD machine can partition the machine into separate jails, and

provide access to the supeser account in each of these without losing control of the
over-all ervironment.

A process in a partition is referred to as jail’’. Whena FeeBSD system is booted
up after a fresh install, no processes will be in jéhen a process is placed in a jall, it,
and ary descendents of the process created after the jail creation, will be in tha jail.
process may be in only one jail, and after creation, it can nad tea jail. Jails are cre-
ated when a prileged process calls the jail(2) syscall, with a description of the jail as
an agument to the callEach call to jail(2) creates aweail; the only vay for a nev
process to enter the jail is by inheriting access to the jail from another process already in
that jail. Processes may v leave the jail they created, or were created in.

dev/
<:: 100 —127.0.0.1 etc/
usr/
var/
dev/ horre/
etc/
usr/
var/ dev/ 10.0.0.1
/' —| hone/ etc/ 10.0.0. 2 A
jail_1/ usr/ 10.0.0.3 1+ fxp0
jail_2/ — var/ 10.0.0. 4 -
jail_3/ home/ 10.0.0.5 -

Fig. 1 — Schematic diagram of machine witloteonfigured jails

Membership in a jail molves a number of restrictions: access to the file name-space
Is restricted in the style of chroot(2), the ability to bind rmekaresources is limited to a
specific IP address, the ability to manipulate system resources and perfalegexti
operations is sharply curtailed, and the ability to interact with other processes is limited
to only processes inside the same jalil.

Jail tales adantage of the»asting chroot(2) behaour to limit access to the file sys-
tem name-space for jailed process@#hen a jail is created, it is bound to a particular
file system root.Processes are unable to manipulate files thgtddwenot address, and
as such the inggity and confidentiality of files outside of the jail file system root are
protected. Taditional mechanisms for breaking out of chroot(2)ehiaeen blockd. In
the epected and documented configuration, each jail igighed with its e&cluswe file
system root, and standard FreeBSD directory layautthis is not mandated by the
implementation.

Each jail is bound to a single IP address: processes within the jail may r®useak
of ary other IP address for outgoing or incoming connections; this includes the ability to
restrict what neterk services a particular jail mayfef. As FeeBSD distinguishes
attempts to bind all IP addresses from attempts to bind a particular address, bind
requests for all IP addresses are redirected to thadodl Jail addressSome netwrk
functionality associated with pileged calls are wholesale disabled due to the nature of

the functionality diered, in particular dcilities which would allov **spoofing’ of 1P
numbers or disrupte traffic to be generated e keen disabled.

Processes running without root\ypleges will notice fey, if any dfferences between a
jailed ewironment or un-jailed efronment. Processesinning with root pwileges
will find that mauy restrictions apply to the pileged calls thg may male. Somecalls
will now return an access error — faxanple, an attempt to create avide node will
now fail. Otherswill have a nore limited scope than normal — attempts to bind a
resered port number on allvailable addresses will result in binding only the address
associated with the jailOther calls will succeed as normal: root may read a iteed
by ary uid, as long as it is accessible through the jail file system name-space.

Processes within the jail will find that thare unable to interact owven verify the
existence of processes outside the jail processes within the jail are peated from
delivering signals to processes outside the jail, as well as connecting to those processes
with deluggers, oren sse them in the sysctl or process file system monitoring mecha-
nisms. Jaidoes not preent, nor is it intended to pvent, the use of ogert channels or
communications mechanisms via accepted iabe$s — for ample, tvo processes
may communicate via soets ver the IP netwrk interface. Nordoes it attempt to pro-
vide scheduling services based on the partitioweler, it does preent calls that inter
fere with normal process operation.

As a result of these attempts to retain the standard FreeBSD API anadvérame
almost all applications will run urfacted. Standardystem services such aslfiet,
FTR and SSH all behae rmormally, as do most third party applications, including the
popular Apache web seaw

5. Jail Implementation

Processes running with root yiteges in the jail find that there are serious restrictions
on what it is capable of doing — in particylactivities that would extend outside of the
jail:

* Modifying the running &rnel by direct access and loadingrel modules is
prohibited.

» Modifying ary of the netvork configuration, integces, addresses, and routing
table is prohibited.

* Mounting and unmounting file systems is prohibited.

* Creating deice nodes is prohibited.

» Accessing na, divert, or routing sockts is prohibited.

» Modifying kernel runtime parameters, such as most sysctl settings, is prohibited.
» Changing securelel-related file flags is prohibited.

» Accessing netark resources not associated with the jail is prohibited.

Other prvileged actiities are permitted as long as yhaee limited to the scope of the
jail:
« Signalling ary process within the jail is permitted.

» Changing the wnership and mode of wrfile within the jail is permitted, as
long as the file flags permit this.

* Deleting an file within the jail is permitted, as long as the file flags permit this.

* Binding resered TCP and UDP port numbers on the jails IP address is permit-
ted. (Attemptgo bind TCP and UDP ports using IN_ADDRANY will be redi-
rected to the jails IP address.)

 Functions which operate on the uid/gid space are all permitted sincecthes
labels for filesystem objects of proceses which are partitioridyy other mecha-
nisms.

These restrictions on root access limit the scope of root processes, enabling most
applications to run un-hindered,tbpreventing calls that might alle an gpplication to
reach bgond the jail and influence other processes or system-wide configuration.

6. Implementationjail in the FreeBSD lernel.

6.1. Thejail(2) system call, allocation, efcounting and deallocation ofstruct
prison

The jail(2) system call is implemented as a non-optional system call in FreeBSD.
Other system calls are controlled by compile time options in é¢neek configuration
file, but due to the minute footprint of the jail implementation, aisvdecided to makit
a dandard &cility in FreeBSD.

The implementation of the system call is straightemdv adata structure is allocated
and populated with the guments preided. Thedata structure is attached to the current
process’struct proc , its reference count set to one and a call to the chroot(2)
syscall implementation completes the task.

Hooks in the code implementing process creation and destruction maintains the refer
ence count on the data structure and free it when the last reference Apsew pro-
cess created by a process in a jail will inherit a reference to the jail, whechivefy
puts the n& process in the same jail.

There is no way to modify the contents of the data structure describing the jail after its
creation, and no ay to attach a process to anséing jail if it was not created from the
inside that jail.

6.2. Fortification of the chroot(2) facility for filesystem name scoping

A number of vays to escape the confines of a chroot(2)-created subscope of the
filesystem viev havebeen identified wer the years.chroot(2) vas n&er intended to be
security mechanism as suclut lsven then the ftp daemon Igely depended on the secu-
rity provided by chroot(2) to prade the ‘anornymous ftp’ access method.

Three classes of escape routested: recursie diroot(2) escapes,.” based escapes
and fchdir(2) based escapesll of these &ploited the &ct that chroot(2) didbtry suf-
ficiently hard to enforce the weroot directory

New code were added to detect and #inimthese escapes, amongst other things by
tracking the directory of the firstie of chroot(2) eperienced by a process and refus-
ing backvards traersal across this directgrys well as additional code to refuse
chroot(2) if file-descriptors were open referencing directories.

6.3. Restrictionof process visibility and interaction.

A macro vas already in\ailable in the lernel to determine if one process couligetf
another processThis macro did the rather comglehecking of uid and gidalues. It
was felt that the compleaty of the macro were approaching thevey edge of IOCCC
entrance criteria, and itag therefore camrted to a proper function namedtres-
pass(pl, p2) which does all the pwous checks and additionally checks the jail
aspect of the acces3he check is implemented such that accass if the origin pro-
cess is jailed it the taget process is not in the same jail.

Process visibility is pnaded through tw mechanisms in FreeBSD, tipeocfs file
system and a sub-tree of tegsctl tree. Bothof these were modified to report only
the processes in the same jail to a jailed process.

6.4. Restrictionto one IP number

Restricting TCP and UDP access to just one IP numberdene almost entirely in
the code which managegrotocol control blocks! When a jailed process binds to a
soclet, the IP number pvided by the process will not be used, instead the pre-config-
ured IP number of the jail is used.

BSD based TCP/IP nebsk stacks sport a special intaeg, the loop-back intexte,
which has the‘fagic” | P rumber 127.0.0.1This is often used by processes to contact
seners on the local machine, and consequently special handling for jails were needed.
To handle this case it & necessary to also intercept and modify theuainaof con-
nection establishment, and when the 127.0.0.1 address were seen from a jailed process,
substitute the jails configured IP number

Finally the APIs through which the nedvk configuration and connection state may
be queried were modified to report only informationvaié to the configured IP num-
ber of a jailed process.

6.5. Addingjail awareness to selected d&e drivers.

A couple of deice drivers needed to be taught about jails, tpg/*’ driver is ane of
them. Thepty driver provides ‘virtual terminals’ to services lile telnet, ssh, rlogin and
X11 terminal windav programs. Thereforgils need access to the ptywdri and code
had to be added to enforce that a particular virtual terminal were not accessed from
more than one jail at the same time.

6.6. Generalrestriction of super-users pavers for jailed super-users.

This item preed to be the simplest bt most tedious to implementedious because a
manual rgiew of all places where thegknel allaved the super user specialyms were
called for ample becauseeary fav places were required to let a jailed root through.
the approximately 260 checks in the FreeBSD 41/@dd, only about 35 will let a jailed
root through.

Since the defult is for jailed roots to not rese grivilege, nev code or dwers in the
FreeBSD lkrnel are automatically jaikaare: they will refuse jailed roots pvilege. The
other part of this protection comes from tlaetfthat a jailed root cannot createvne
device nodes with the mknod(2) systemcall, so unless the machine administrator creates
device nodes for a particular dee inside the jails filesystem tree, thevdriin effect
does not ®ist in the jail.

As a side-dect of this work the suser(9) APl were cleaned up arttrded to cater
for not only the jail &cility, but also to ma& room for future partitioningdcilities.

6.7. Implementationstatistics

The change of the suser(9) APl modified approx 350 source lines wtistrikver
approx. 100 source filesThe \ast majority of these changes were generated automati-
cally with a script.

The implementation of the jaik€ility added approx 200 lines of code in total, dis-
tributed aver approx. 50 files.and about 200 lines in twew kernel files.

7. ManagingJails and the Jil File System Ewironment

7.1. Creating a Jil Environment

While the jail(2) call could be used in a number @ys, the gpected configuration
creates a complete FreeBSD installation for each Jdils includes copies of all rele-
vant system binaries, data files, and #sdetc directory Such a configuration max-
imises the independence oarious jails, and reduces the chances of interference
between jails being possible, especially when it is desirable tadpraoot access
within a jail to a less trusted user

On a box making use of the jaddility, we refer to two types of edironment: the host
environment, and the jail @ronment. Thehost emironment is the real operating sys-
tem ewironment, which is used to configure intarés, and start up the jail$here are
then one or more jail @monments, dectively virtual FreeBSD machinesWhen con-
figuring Jail for use, it is necessary to configure both the host and yaib@ments to
prevent overlap.

As jailed virtual machines are generally bound to an IP address configured using the
normal IP alias mechanism, those jail IP addresses are also accessible toitwst en
ment applications to usdf the accessibility of some host applications in the jai-en
ronment is not desirable, it is necessary to configure those applications to only listen on
appropriate addresses.

In most of the production gmonments where jail is currently in use, one IP address
is allocated to the hostw@ronment, and then a number are allocated to jaiebowith
each jail box recging a unique IPIn this situation, it is sdicient to configure the net-
working applications on the host to listen only on the hasGénherally this consists of
specifying the appropriate IP address to be used by inetd and SSH, and disabling appli-
cations that are not capable of limiting their address scope, such as sendmail, the port
mapper and syslogd.Other third party applications thatuealeen installed on the host
must also be configured in this manr@rusers connecting to the jailbox will disem
the host evironment service, unless the jailbox has specifically bound a service to that
port. Insome situations, this can actually be the desirablevimha

The jail ewironments must also be custom-configur@this consists of tilding and
installing a miniature ersion of the FreeBSD file system trekadfa subdirectory in the
host emironment, usuallyusr/jail , or /data/jall , With a subdirectory per jail.
Appropriate instructions for generating this tree are included in the jail(8) man page, b
generally this process may be automated using the Free@itDelvironment.

One notable diérence from the defilt FreeBSD install is that only a limited set of
device nodes should be createMlAKEDEV(8) has been modified to accept'jail’’
argument that creates the correct set of nodes.

To improve gorage diciengy, a fair number of the binaries in the system tree may be
deleted, as thyeare not releant in a jail enironment. Thisincludes the &rnel, boot
loader and related files, as well as harah® and netark configuration tools.

After the creation of the jail tree, the easieaywo configure it is to start up the jail in
single-user modeThe sysinstall admin tool may be used to help with the task, although
it is not installed by defult as part of the system tre€hese tools should be run in the
jail environment, or the will affect the host enronments configuration.

mkdir /data/jail/192.168.11.100/stand

cp [/ stand/sysinstall /data/jail/192.168.11.100/stand

| ail /data/jail/192.168.11.100 testhostname 192.168.11.100\
/bin/sh

After running the jail command, the shell issnwithin the jail ewironment, and all
further commands will be limited to the scope of the jail until the skidl.elf the net-
work alias has not yet been configured, then the jail will be unable to access the net-
work.

The startup configuration of the jailv@ronment may be configured so as to quell
warnings from services that cannot run in the j#ilso, ary per-system configuration
required for a normal FreeBSD system is also required for each jaillypically, this
includes:

* Create empty /etc/fstab
* Disable portmapper
* Run nevaliases

* Disabling inter&ce configuration
* Configure the resobr

* Set root passard

* Set timezone

» Add ary local accounts

* Install ary packets

7.2. StartingJails

Jails are typically started byeeuting their /etc/rc script in much the same manner a
shell was started in the prmus section.Before starting the jail, arrelevant network-
ing configuration should also be performetypically, this involves adding an addi-
tional IP address to the appropriate retwinterface, setting netark properties for the
IP address using IP filtering, foanding, and bandwidth shaping, and mounting a pro-
cess file system for the jail, if the ability to dgbprocesses from within the jail is
desired.

i fconfig ed0 inet add 192.168.11.100 netmask 255.255.255.255

mount -t procfs proc /data/jail/192.168.11.100/proc

| ail /data/jail/192.168.11.100 testhostname 192.168.11.100 \
/bin/sh /etc/rc

A few warnings are generated for syscthat are not permitted to be set within the
jail, but the end result is a set of processes in an isolated prosgsmeent, bound to
a dngle IP addressNormal procedures for accessing a FreeBSD machine apply: telnet-
ing in through the netark reveals a telnet prompt, login, and shell.

% B ax
PID TT STAT TIME COMMAND
228 ?? SsJ 0:18.73 syslogd
247 ?? Isd 0:00.05 inetd -wW
249 7?7 IsJ 0:28.43 cron
252 ?? SsJ 0:30.46 sendmail: accepting connections on port 25
291 ?? 1sJ 0:38.53 /ustr/local/sbin/sshd
93694 ?? SJ 0:01.01 sshd: rwatson@ttyp0 (sshd)
93695 pO0 SsJ 0:00.06 -csh (csh)
93700 pO0 R+J 0:00.00 ps ax

It is immediately olsious that the enronment is within a jailbox: there is no init pro-
cess, no &rnel daemons, and a J flag is present beside all processes indicating the pres-
ence of a jail.

As with ary FreeBSD system, accounts may be created and deleted, maiVesedkli
logs are generated, packages may be added, and the system mayebddraak con-
figured incorrectlyor running a liggy \ersion of a piece of sofawe. Haovever, dl of
this happens strictly within the scope of the jalil.

7.3. Jil Management

Jail management is an interesting prospect, as there apetspectres from which a
jail ervironment may be administered: from within the jail, and from the hastoen
ment. Fromwithin the jail, as described ab# the process is remarkably similar toyan
regular FreeBSD install, although certain actions are prohibited, such as mounting file
systems, modifying systenmeiknel properties, etcThe only area that really d#rs are
that of shutting the system wno: the processes within the jail may defi signals
between them, aleing all processes to be killedutbbringing the system back up
requires intergntion from outside of the jailbox.

From outside of the jail, there are a range of capabilities, as well as limitalibes.
jail ervironment is, in dkct, a subset of the hostvenonment: the jail file system
appears as part of the host file system, and may be directly modified by processes in the
host enironment. Processeasithin the jail appear in the process listing of the host, and
may likewise be signalled or dalgged. Thehost process file system neskthe host-
name of the jail enronment accessible in /proc/procnum/statusyaiig utilities in the
host erironment to manage processes based on jailn&ioeever, the deéult config-
uration allavs prvileged processes within jails to set the hostname of the jail, which
makes the status file less useful from a management pekgpédtne contents of the
jail are malicious. To prevent a jail from changing its hostname, the "jail.set_host-
name_allaved" sysctl may be set to O prior to starting fails.

One aspect immediately obsable in an evironment with multiple jails is that uids
and gids are local to each jailMmonment: the uid associated with a process in one jail
may be for a dferent user than in another jairhis collision of identifiers is only visi-
ble in the host efironment, as normally processes from one jail ak@mnésible in an
environment with another scope for user/uid and group/gid mappvanagers in the
host emironment should understand these scoping issues, or confusion and unintended
consequences may result.

Jailed processes are subject to the normal restrictions presentyfqromesses,
including resource limits, and limits placed by the rmekvcode, including fineall
rules. Byspecifying firgval rules for the IP address bound to a jail, it is possible to
place connectity and bandwidth limitations on inddual jails, restricting services that
may be consumed orfefed.

Management of jails is an area that will see further imgmnent in future @rsions of
FreeBSD. Somef these potential impv@ments are discussed later in this paper

8. Future Directions

The jail facility has already been degkx in numerous capacities and w f@pportu-
nities for improvement hae manifested themsebs.

8.1. Improved Virtualisation

As it stands, the jail code prides a strict subset of system resources to the paH en
ronment, based on access to processes, filespmetasources, and piieged services.
Virtualisation, or making the jail @monments appear to be fully functional FreeBSD

systems, allws maximum application support and the ability teeofr wide range of
services within a jail elronment. Haovever, there are a number of limitations on the
degree of virtualisation in the current code, and reimg these limitations will enhance
the ability to ofer services in a jail efronment. o aeas that deseevgeater atten-
tion are the virtualisation of netwk resources, and management of scheduling
resources.

Currently a sngle IP address may be allocated to each jail, and all communication
from the jail is limited to that IP addresd$n particular these addresses are IPv4
addresses. Thereas been substantial interest in impng interiace virtualisation,
allowing one or more addresses to be assigned to areiceednd remang the require-
ment that the address be an IPv4 addressyialiothe use of IPv6Also, access to ra
soclets is currently prohibited, as the current implementation wf sackets allavs
access to m |IP paclkets associated with all intexdes. Limitingthe scope of the va
soclet would allav its safe use within a jail, re-enabling support for ping, and other net-
work delugging and ealuation tools.

Another area of great interest to the current consumers of the jail code is the ability to
limit the impact of one jail on the CPU resourceailable for other jails.Specifically
this would require that the jail of a process play a rule in its scheduling parameters.
Prior work in the area of lottery scheduling, currentigitable as patches on FreeBSD
2.2.x, might be Ieeraged to allev some dgree of partitioning between jail @ron-
ments[LOTTERY1] [LOTTERY2]. Howeve, as the current scheduling mechanism is tar
geted at time sharing, and FreeBSD does not currently support real time preemption of
processes indenel, complete partitioning is not possible within the current fnaorie

8.2. Improved Management

Management of jail efironments is currently sominat ad hoc--creating and starting
jails is a well-documented procedureit lwlay-to-day management of jails, as well as
special case procedures such as shutdare not well analysed and document&tie
current lernel process management infrastructure does met tha ability to manage
pools of processes in a jail-centri@ay For example, it is possible to, within a jalil,
deliver a 9gnal to all processes in a jailutit is not possibly to atomically et all
processes within a jail from outside of the jdflthe jail code is to déctively limit the
behaiour of a jail, the ability to shut it dan cleanly is paramountSimilarly, shutting
down a jail cleanly from within is also not well defined, the traditional shwatdotili-
ties haing been written with a host winonment in mind. This suggests a number of
improvements, both in thedenel and in the usdand utility set.

First, the ability to addressknel-centric management mechanisms at jails is kmpor
tant. Oneway in which this might be done is to assign a unique jail id, not erigo-
cess id or process group id, at jail creation tirAenew jailkill() syscall would permit
the direction of signals to specific jailids, aliog for the efflective termination of all
processes in the jailA unique jailid could also supplant the hosthame as the unique
identifier for a jail, allaving the hostname to be changed by the processes in the jail
without interfering with jail management.

More carefully defining the uséand semantics of a jail during startup and shwtdo
is also important.The traditional FreeBSD gmonment maks use of an init process to
bring the system up during the boot process, and to assist inwhutdosimilar tech-
nigue might be used for jail, infett a jailinit, formulated to handle the clean startup
and shutdan, including calling out to jail-local /etc/rc.shutdio, and other useful shut-
down functions. A jailinit would also present a central location for d&lng manage-
ment requests to within a jail from the hostiesnment, alleving the host erironment
to request the shutdm of the jail cleanlybefore resorting to terminating processes, in
the same style as the hoswikonment shutting den before killing all processes and
halting the lernel.

Improvements in the host gmonment wuld also assist in impving jail manage-
ment, possibly including automated runtime jail management tools, tools to more easily
construct the pegail file system area, and include jail shutaioas part of normal sys-
tem shutdan.

These impreements in the jail frameork would improve oth rav functionality and
usability from a management perspeeti The jail code has raised significant interest in
the FreeBSD communitygnd it is hoped that this type of immel functionality will be
available in upcoming releases of FreeBSD.

9. Conclusion

The jail facility provides FreeBSD with a conceptually simple security partitioning
mechanism, alling the delgaion of administratie ights within virtual machine par
titions.

The implementation relies on restricting access within the jait@ment to a well-
defined subset of theverall host emironment. Thisincludes limiting interaction
between processes, and to files, mekwesources, and piieged operationsAdminis-
trative ovehead is reduced througlvading fine-grained access control mechanisms,
and maintaining a consistent administratinteriace across partitions and the hostien
ronment.

The jail facility has already seen widespread dgpient in particular as aehicle for
delivering "virtual private serer" services.

The jail code is included in the base system as part of FreeBSD 4.0-RELEASE, and
fully documented in the jail(2) and jail(8) man-pages.

Notes & References

[BIBA]
K. J. Biba, Intgrity Considerations for Secure Computer Systems, USAF Elec-
tronic Systems Mision, 1977

[CHROOT]
Dr. Marshall Kirk Mckusick, paate communication:‘A ccording to the SCCS
logs, the chroot call as added by Bill 3Joon March 18, 1982 approximately 1.5
years before 4.2BSD ag releasedThat was well before we had ftp seng of
ary sort (ftp did not shav up in the source tree until January 1983)y best
guess as to its purposeasvto allev Bill to chroot into the /4.2BSDWld direc-
tory and liild a system using only the files, include files, etc contained in that
tree. Thatwas the only use of chroot that | remember from the early tays.

[LOTTERY1]
David Petrou and John Milford. Proportional-Share Scheduling: Implementation
and Ewaluation in a Wdely-Deployed Operating System, December 1997.
http://www.cs.cmu.edu/"dpetrou/papers/freebsd_lottery writeup98.ps
http://www.cs.cmu.edu/"dpetrou/code/freebsd_lottery code.tar.gz

[LOTTERY2]
Carl A. Waldspuger and Wliam E. Weihl. Lottery Scheduling: Fable Pro-
portional-Share Resource Management, Proceedings of the First Symposium on
Operating Systems Design and Implementation (OSDI '94), pages 1-11, Mon-
terey, California, November 1994.
http://www.research.digital.com/SRC/personal/caw/papers.html|

[POSIX1e]
Draft Standard for InformationeEhnology — Portable Operating System ter
face (POSIX) — Rrt 1: System Application Program Intece (API) —
Amendment: Protection, Audit and Control Interés [C Language] IEEE Std
1003.1e Draft 17 Editor Cag&chaufler

[ROOT]
Historically other names kia been used at times, Zilog for instance called the
superuser accountzeus’.

[UAS] One such niche product is tHEAS” system to maintain and audit A& con-
figurations on MVS systems.
http://www.entactinfo.com/products/uas/

[UF] Quote from the UseFriendly cartoon by llliad.
http://www.userfriendly.org/cartoons/archives/98nov/19981111.html

