XORP Routing Information Base (RIB) Process
Version 1.6

XORP, Inc.
http://mwww.xor p.org/
feedback@xorp.org

January 7, 2009

1 Introduction

This document provides an overview of the XORP Routing Imiation Base (RIB) process. It is intended
to provide a starting point for software developers wishimgnderstand or modify this software.

The RIB process takes routing information from multiple thog protocols, stores these routes, and
decides which routes should be propagated on to the formgueligine. The RIB performs the following
tasks:

e Stores routes provided by the routing protocols running HO&P router.

e If more than one routing protocol provides a route for the sanibnet, the RIB decides which route
will be used.

e The winning unicast routes are propagated to the Forwald8imgine Abstraction (FEA) process and
hence on to the forwarding engine. Multicast routes are ngpggated to the FEA - they are only
used to provide topology information to multicast routinmgtpcols.

e Protocols such as BGP may supply to the RIB routes that hawxthop that is not an immediate
neighbor. Such nexthops are resolved by the RIB so as toda@ioute with an immediate neighbor
to the FEA.

e Protocols such as BGP need to know routing metric and redithafiformation to nexthops that are
not immediate neighbors. The RIB provides a way to registirést in such routing information, in
such a way that the routing protocol will be notified if a chamgcurs.

e Protocols such as RIB need to announce routes to the negfexmr routes from directly connected
subnets, static routes, etc). The RIB provides the meamafas redistributing the routes from a
specific table to parties that have registered interestantéble.

By default, the RIB process holds four separate RIBs:

e Unicast IPv4 RIB
e Unicast IPv6 RIB



e Multicast IPv4 RIB
e Multicast IPv6 RIB

C++ templates are used to build specialized IPv4 and IPvSiores from the same code. Routing
protocols such as Multiprotocol BGP are capable of supglyimutes that are multicast-only, and these
would be stored in the multicast RIBs. The unicast and masti&kIBs primarily differ in that only unicast
routes are propagated to the forwarding engine.

Note that we do not currently support multiple RIBs for otperposes, such as VPN support, but the
RIB architecture will permit such extensions.

2 Structure of a RIB

The RIB process may hold multiple RIBs. Figure 1 gives anaegr of the structure of a unicast RIB.

RIP Oria
routes rngin
Table
OSPF oriai \ Merge
routes rngin Table
Table
Merge
static oriai Table Extint Redist Redist To FEA
routes rngin Xtin egister edis
™ Table Table Table Table "
To other
IBGP Rib Clients
routes | Origin
™ Table Merge ) )
Table Register Rib
EBGP / Clients
routes .| Origin N L
™ Table Registration Notifications

of interest of change to

from routing routing protocols

protocols

Figure 1: Overview of a RIB

In general, routing protocols supply routes to the Orighig@a. These routes then flow though the tree
structure from left to right, until they reach the RedistiEalwhere they are propagated to the Forwarding
Engine Abstraction (FEA) process.

2.1 Plumbing

The RIB plumbing code dynamically creates and maintaingriw of tables as shown in Figure 1. When
a new routing protocol registers with the RIB, a new Origiol€will be created, and a MergeTable or an
ExtIntTable will be created to plumb that OriginTable int@tRIB tree at an appropriate location. Similarly,
if a routing protocol deregisters with the RIB, the relev@miginTable and additional tables will be deleted
and the RIB tree simplified again.



2.2 OriginTable

The OriginTable acceptsout e _add requests from a single routing protocol, stores the routd, @op-
agates it downstream. It also answkemokup_r out e requests from downstream from the routes it has
stored.

An OriginTable for the “connected” protocol always exidts handle routes for directly connected in-
terfaces. It gets its information via the VifManager frone throrwarding Engine Abstraction (FEA) process.

2.3 MergeTable

A MergeTable has two upstream (parent) tables and one daanst(child) table.

Multiple OriginTables may hold different routes for the samsubnet. Thus, when aadd_r out e
request reaches a MergeTable from one parent, the Mergepakibrms a route lookup on the other parent
to see if the route already exists. If it does, then the newer@ionly propagated if it is better than the
existing route, where “better” is determined based on tlaive administrative distance of the routes.

Similarly, if adel et e_r out e request reaches a MergeTable, it performs a route lookupenther
parent table. If the route being deleted was better thanltemative, then the delete is propagated down-
stream followed by amadd_r out e for the alternative. If the route being deleted was worse tha alter-
native, then the deletion needs to be propagated no further.

When a MergeTable received @okup_r out e request from downstream, it sends the request on to
both parents. The better of the two answers is sent in respons

2.4 ExtintTable

ExtIntTable functions very similarly to the MergeTablet bhere is an asymmetry between the parents. On
the Internal side, the originating routing protocols aleaypply routes that have an immediate neighbor
as the nexthop. On the External side, the originating rgufrotocols may supply routes that have an
immediate neighbor as the nexthop, but they may also supplgs where the nexthop is multiple IP hops
away.

When anadd_r out e request arrives from the external parent, the ExtIntTablesdhe same compar-
isons that happen with a MergeTable. However, it also chieckse if the nexthop is an immediate neighbor.
If it is not, then the ExtIntTable attempts to find a route timaicates which immediate neighbor to use to
reach the nexthop, and the nexthop in the route that is peaedglownstream will be that of this immediate
neighbor. If no route exists to the nexthop, the route will Im® propagated downstream, but will be stored
in a table of unresolved routes in case a route that arritesdan cause it to resolve.

Each RIB only contains a single ExtIntTable.

2.5 RegisterTable

RegisterTable takes registrations from routing protoémisouting information related to specific destina-
tions, answers the request, and stores the registratidhe ifouting information in the answer changes, it
will asynchronously notify the routing protocol of the clgan The precise interface is described in section
3.6, but the general idea is illustrated by this example:

Suppose the RIB contains routes for 1.0.0.0/16 and 1.@2.0Now a routing protocol expresses an
interest in address 1.0.1.1. This matches against thengpetitry for 1.0.0.0/16, so the answer contains
1.0.0.0/16 and the related nexthop and metric.



However we would like the routing protocol to be able to use déinswer if it also cares about other
addresses, such as 1.0.0.1 or 1.0.2.1. However, while tineefomatches against 1.0.0.0/16, the latter
matches against 1.0.2.0/24. Thus if the RIB only return€10016, the routing protocol cannot tell whether
it can use this information for any other address than thetasked about.

To rectify this, the RIB returns not only the answer (1.0/06) plus metric and nexthop), but also the
subset of this prefix for which the answer is known to be gondhis case, the answer is good for 1.0.0.0 to
1.0.1.255, which is returned as a subnet: 1.0.0.0/23. Adyesd that the routing protocol cares about that
falls within 1.0.0.0/23 does not require additional comioation with the RIB.

The RegisterTable keeps track of which information it gavecW routing protocol, so that if this in-
formation becomes invalid, the routing protocol can berimied. For example, if a new route appears for
1.0.1.0/24, then this would cause the registration cogetif.0.0/23 to be invalidated because 1.0.1.0/24 is
more specific than 1.0.0.0/16 and overlaps the range 1/230dd the registration.

Each RIB only contains a single RegisterTable.

2.6 RedistTable

The purpose of a RedistTable is to redistribute the routas finy RIB table to all external parties that have
registered interest at that table. Thus, a RedistTable earséd for the redistribution of the configured (and
possibly filtered) routes from one routing protocol to amoth-or example, routes from within an AS might
be propagated from OSPF to BGP for external advertisement.

A RedistTable can by dynamically plumbed into the tree ofeglat any point, and there may be many
RedistTables in each RIB. Typically, RedistTables arerieseimmediately after an OriginTable, and at the
end of the tree of tables.

ResistTables are used also for redistributing the finaleott the FEA and other interested processes.
Both the unicast and multicast RIBs have a RedistTable anldgsee Figure 1).

3 XRL Interface

The RIB supports the following XRLs.

3.1 Routing Protocol Registration

add_igp_table4 ? protocol:txt
uni cast : bool
pr ot ocol : t xt
uni cast : bool
pr ot ocol : t xt
uni cast : bool

target class:txt & target _instance:txt

mul ti cast: bool

target class:txt & target _instance:txt

mul ti cast: bool

target class:txt & target _instance:txt

mul ti cast: bool

pr ot ocol : t xt target class:txt & target _instance:txt
& uni cast : bool nmul ti cast: bool

delete_igp_table4 ? protocol:txt & target_class:txt & target _instance:txt
& uni cast: bool & multicast: bool

delete_igp _table6 ? protocol:txt & target_class:txt & target _instance:txt
& uni cast: bool & multicast: bool

del ete_egp_table4 ? protocol :txt & target_class:txt & target _instance:txt

add_i gp_tabl e6

add_egp_tabl e4

D R0 D R D Ro

add_egp_tabl e6

R0 R0 Qo Ro Ro Ro Qo Ro



& uni cast: bool & nulticast: bool
del ete_egp table6 ? protocol:txt & target class:txt & target instance:txt
& uni cast: bool & nulticast: bool

These XRLs are used by routing protocols to register withRH& process, and hence to create Orig-
inTables in all the RIBs.

The_i gp_ xrls will plumb the OriginTable on the Internal side of thetExXTable. The_egp_ xrls will
plumb the OriginTable on the External side of the Extint€abl

pr ot ocol is a text string used to identify the routing protocol. Cuathgit MUST be a protocol the
RIB knows about, or an administrative distance cannot bigm@ead to the routes. Future versions of the RIB
may make this interface more extensible.

t ar get cl ass andt ar get _i nst ance specify the class and instance associated with the target.

uni cast andmul ti cast indicate whether the routing protocol will insert routewithe unicast RIB
or the multicast RIB or both.

3.2 Adding and Deleting Routes

add_route4 ? protocol :txt & unicast:bool & nulticast:bool \
& network:ipvdnet & nexthop:ipv4d & netric:u32 \
& policytags:|list
add_rout e6 ? protocol :txt & unicast:bool & nulticast:bool \
& network:ipvénet & nexthop:ipv6 & netric:u32 \
& policytags:|list
replace_route4 ? protocol:txt & unicast:bool & multicast: bool \
& network:ipvdnet & nexthop:ipv4d & netric:u32 \
& policytags:|list
replace_route6 ? protocol:txt & unicast:bool & nulticast:bool \
& network:ipvbnet & nexthop:ipv6e & netric:u32 \
& policytags:|list
del ete_route4 ? protocol:txt & unicast:bool & multicast:bool \
& network: i pvdnet
del ete_rout e6 ? protocol :txt & unicast:bool & nulticast:bool \
& network: i pvbnet
add_interface_route4 ? protocol :txt \
& uni cast: bool & multicast: bool \
& network: i pvdnet & nexthop:ipv4 \
& ifname:txt & vifname:txt & nmetric:u32 \
& policytags:|list

add_interface_route6 ? protocol :txt \



& uni cast: bool & nulticast: bool \
& network:ipvénet & nexthop:ipv6é \
& ifnane:txt & vifname:txt & nmetric:u32 \
& policytags:|list

replace_interface_routed4 ? protocol :txt \
& uni cast: bool & mnulticast: bool \
& network:ipvdnet & nexthop:ipv4 \
& ifname:txt & vifname:txt & netric:u32 \
& policytags:|list

replace_interface_route6 ? protocol:txt \
& uni cast: bool & nulticast: bool \
& network: i pvbnet & nexthop:ipv6 \
& ifnane:txt & vifnanme:txt & nmetric:u32 \

& policytags:|list

These XRLs are used to communicate new routes, changedroutine deletion of routes to the RIB.
Theadd.i nt erf ace_rout e andr epl ace_ nt er f ace_r out e XRLs are similar to thedd_r out e
andr epl ace_r out e XRLs except that the origin explicitly specifies the outgpimetwork interface and
vif for the route.

Note that sending aadd_r out e for a route that is already in the OriginTable for that pratos an
error, as is sending mepl ace_r out e or del et e_r out e for a route that is not in the OriginTable for
that protocol.

3.3 Route Lookup

| ookup_route by dest4 ? addr:ipv4 & unicast:bool & nulticast: bool
-> next hop:ipv4d

| ookup_route by dest6 ? addr:ipv6 & unicast:bool & nulticast: bool
-> next hop:ipv6

These XRLs may be used to see how the RIB would route a paakatsipecific destination.
next hop will return the resolved nexthop if the request is succéssiuall zeros otherwise. It is an
error for the unicast and multicast fields to both be true oh lfalse.

3.4 VIF Management (test interface)

new vif ? nane:txt
add vif_addr4 ? nane:txt & addr:ipv4 & subnet:ipvdnet
add_vif_addr6 ? nanme:txt & addr:ipv6 & subnet:ipv6énet

These XRLs can be used to inform the RIB about directly cotuefvirtual) interfaces. The use of
these XRLs is intended only for testing purposes - the RIBnadlly learns of VIFs directly from the FEA
process.



3.5 Route Redistribution

redist_enable4 ? to xrl _target:txt & fromprotocol:txt & unicast: boo
& mul ticast: bool & cookie:txt

redi st_enable6 ? to xrl _target:txt & fromprotocol:txt & unicast: boo
& mul ticast:bool & cookie:txt

redi st_disabled4 ? to xrl _target:txt & fromprotocol:txt & unicast: bool
& mul ticast:bool & cookie:txt

redi st_disable6 ? to_xrl _target:txt & fromprotocol:txt & unicast: bool
& mul ticast:bool & cookie:txt

redi st_transaction_enabled4 ? to xrl _target:txt & from protocol :txt
& uni cast: bool & multicast:bool & cookie:txt

redi st_transaction_enable6 ? to_xrl _target:txt & from protocol:txt
& uni cast: bool & multicast: bool & cookie:txt

redi st_transaction_disable4 ? to xrl _target:txt & from protocol:txt
& uni cast: bool & multicast:bool & cookie:txt

redi st _transaction_disable6 ? to xrl _target:txt & from protocol:txt
& uni cast: bool & multicast:bool & cookie:txt

These XRLs are intended to be used to enable and disableregistribution from a RIB table to an
XRL target. Thex t ransact i on* XRLs are used for registering interest in transaction-thasete re-
distribution {.e., where there ist art _t ransacti onandconmni t _t ransact i on around each block
of add/delete routes).

3.6 Registration of Interest in Routes

register_interest4 ? target:txt & addr:ipv4
-> resol ves: bool & base_addr:ipvd & prefix _len:u32 &
real _prefix_|en:u32 & nexthop:ipvd & nmetric:u32
register_interest6 ? target:txt & addr:ipv6
-> resol ves: bool & base_addr:ipv6 & prefix_len:u32 &
real _prefix_|en:u32 & nexthop:ipve & nmetric:u32
deregister interest4 ? target:txt & addr:ipvd & prefix_|len:u32
deregi ster _interest6 ? target:txt & addr:ipv6 & prefix_|len:u32

These XRLs are used to register and deregister interesutmgoinformation related to a specific IP
address.

Target is the name of the XRL module that registered theaster

r esol ves indicates whether or not the address is routable. If it igoatable, the values afext hop
andret ri ¢ are undefinedr eal _pr ef i x_| en returns the prefix length of the routing entry that matches
the address in the requespr ef i x_| en returns the prefix length of the largest subnet that covers th
address and is not overlayed by a more specific route. Ppheagix len >= real prefix len and
addr is an address within the subnease_addr/ pr efi xJ1 en which itself is a subset of the subnet
base_addr/real prefixlen.

The routing protocol need not ask again for any addressigsabithinbase_addr / pr ef i x1 en but
can not use this answer to determine anything about addreesdie outside dbase _addr / prefi x 1 en
but withinbase_addr/real prefix.len.



3.7 Registration of Interest in Routes: Client Interface

When a routing protocol has registered interest in routesRiB will need to be able to asynchronously call
the routing protocol to inform it of any changes. Thus thetirmuprotocol must implement the rib client
interface. This consists of the following XRLS:

route_info_changed4 ? addr:ipv4d & prefix_len:u32 &
next hop:ipvd & nmetric:u32

route_info_changed6 ? addr:ipv6e & prefix_|len:u32 &
next hop:i pve & metric:u32

route_info_invalid4 ? addr:ipv4d & prefix_|en:u32
route_info_invalid6é ? addr:ipv6e & prefix_|en:u32

Ther out e_i nf o_.changed XRLs inform the routing protocol that the nexthop or metssaciated with
the route with subnetddr / pr ef i X1 en has changed. The registration with the RIB is still valid.

Therout e_i nf o.i nval i d XRLs inform the routing protocol that the information asisbed with
the specified subnet is no longer correct. The registratiitin tive RIB is no longer valid, and the routing
protocol must re-register with the RIB to find out what hapgmkn

A Modification History

e December 11, 2002: Initial version 0.1 completed.

e March 10, 2003: Updated to match XORP release 0.2: Addednrg#ton about the “connected”
OriginTable.

e June 9, 2003: Updated to match XORP release 0.3: Descrikatketh RibClient registration mecha-
nism.

e August 28, 2003: Updated to match XORP release 0.4: No clsange
e November 6, 2003: Updated to match XORP release 0.5: No elsang

e July 8, 2004: Updated to match XORP release 1.0: ReplacedrBgble with RedistTable. Fixed
the XRLs specification.

e April 13, 2005: Updated to match XORP release 1.1. Fixed tR& Xames. Added description for
the addinterfaceroute and replacenterfaceroute XRLs.

e March 8, 2006: Updated to match XORP release 1.2: No significiaanges.
e August 2, 2006: Updated to match XORP release 1.3: Added ffi¢ation History” appendix.
e March 20, 2007: Updated to match XORP release 1.4: No changes

e July 22, 2008: Updated to match XORP release 1.5: No changes.



