
XORP Inter-Process Communication Library Overview

Version 1.6

XORP, Inc.
http://www.xorp.org/
feedback@xorp.org

January 7, 2009

Abstract

Extensibility and robustness are key goals of the eXtensible Open Router Project (XORP). A step
towards satisfying both of these goals is to separate the functional components of a router into indepen-
dent tasks and to execute each of these tasks as separate processes. From an extensibility perspective this
allows components of the router to be started, stopped, and exchanged dynamically, and to be distributed
across a number of hosts. From a robusness perspective, the processes are afforded the protection mech-
anisms afforded by modern operating systems so a failure of one routing task does not necessarily bring
the router to a halt. The routing tasks do need to communicateand we have developed an asynchronous
remote procedure call mechanism that is capable of working with multiple transport protocols between
remote hosts and can leverage existing IPC mechanisms within a single host. This document discusses
aspects of the design and the directions it may take in future.

1 Introduction

Robustness and extensibility are two of the goals of the XORPproject. One way a router can achieve
robustness is to run routing protocols in protected environments, such as separate userland processes on
a modern operating system. And one way a router can achieve extensibility is to be independent of the
details about where those routing processes are running andwhat the composition of the forwarding plane
is. The routing processes and network interfaces could be running on one machine or distributed across a
cluster of machines that appear as single router. A necessary feature once routing protocols are running in
distinct processes and potentially on distinct machines isan inter-process communication mechanism. In
contrast to traditional inter-process communication schemes, the scheme employed in the XORP project can
utilize multiple transport protocols and potentially communicate with unmodified components through these
protocols, for instance SNMP or HTTP.

The lofty goals of XORP’s Inter-Process Communication (XIPC) scheme are:

• to provide all of the IPC communication mechanisms that a router is likely to need,e.g., sockets,
ioctl’s, System V messages, shared memory.

• to provide a consistent and transparent interface irrespective of the underlying transport mechanism
used.

• to transparently select the appropriate IPC mechanism whenalternatives exist.

1

• to provide an asynchronous interface.

• to be efficient.

• to potentially wrapper communication with non-XORP processes,e.g., HTTP and SNMP servers.

• to be renderable in human readable form so XORP processes canread and write commands from
configuration files.

The XIPC goals are realized through XORP Resource Locators (XRLs) and the XORP IPC (XIPC)
library. XRLs are responsible for describing an inter-process calls and their arguments. An XRL may be
represented in human readable form that allows for easy manipulation with editing tools and invocation from
the command line during development.

XORP processes export XRL interfaces to a process known as the Finder and inform it of which IPC
schemes are available to invoke each XRL. The Finder is then able to provide a resolution service for XORP
processes. When a process needs to dispatch an XRL it first contacts the Finder, obtains details on which
IPC mechanisms are available to contact the process, and then instantiates a suitable transport.

The XIPC library provides the framework for handling and manipulating XRLs, communicating with
the Finder, and common protocol families for conducting IPC. In addition to the XIPC library, an interface
definition language exists, together with tools to translate these into callable C++ interfaces and into a set
of C++ handler routines for handling the receipt of XRL calls. These tools are described in document [1].
The tools reduce the amount of familiarity the working programmer needs to have with the internals of the
XIPC library. This document provides an overview of the XIPClibrary and is the recommended starting
point before using the library.

2 XORP Resource Locators (XRL’s)

The mechanism we’ve settled on for IPC within XORP processesis mediated throughXorp Resource Loca-
tors (XRL’s). An XRL describes a procedure call. It comprises theprotocol family to be used for transport,
the arguments for the protocol family, the interface of the target being called and its version, the method,
and an argument list. Examples of XRLs in their human readable forms are shown in figure 1. The existence
of a human readable form for XRLs is chiefly a convenience for humans who need to work with XRLs and
not indicative of how they work internally.

Resolved and unresolved forms of the same are XRL are depicted in figure 1. The unresolved form
is the starting point for the majority of inter-process communication. In the unresolved form the protocol
family is set to “finder” and the protocol parameters set to the target name that the XRL call is intended for.
A process wishing to dispatch an XRL for the first time passes the unresolved XRL to the Finder, which
returns the resolved form with the appropriate protocol family and protocol family arguments. The finder
may also modify the other components of the XRL, but doesn’t usually do so. This functionality may be
useful when supporting backwards compatibility of interfaces,i.e., the Finder could modify the interface
number and method name.

The resolved forms of XRLs are typically maintained in a client side cache so the Finder need not be
consulted for each XRL dispatch.

2

(a) Unresolved form:

finder://fea/fti/0.1/add_route?net:ipv4net=10.0.0.1/8&gateway:ipv4=192.150.187.1
+----- +-- +-- +-- +-------- +--
| | | | | |
| | | | Method Arguments
| | | |
| | | Interface version
| | |
| | Interface Name
| |
| Protocol Parameters
|
Protocol Family

(b) Resolved form:

stcp://192.150.1.5:1992/fti/0.1/add_route?net:ipv4net=10.0.0.1&gateway:ipv4=192.150.1.1
+--- +-------------- +-- +-- +-------- +--
| | | | | |
| | | | Method Arguments
| | | |
| | | Interface version
| | |
| | Interface Name
| |
| Protocol Parameters
|
Protocol Family

Figure 1: Human readable XRL forms.

3

3 XRL Targets and the Finder

An XRL Target is an entity that is capable of dispatching XRLs. TheFinder is the entity in XIPC system that
knows about XRL Targets and is responsible for directing IPCcommunication between XRL Targets. The
IPC communication schemes that XRL Targets use to communicate XRLs between each other once they
have been resolved by the Finder are known asProtocol Families.

Each XRL Target has an associated class name and an instance name. Class names indicate the func-
tionality that the target implements and there may be multiple targets in the XIPC system with the same
class name. Instance names are unique identifiers for each target in the XIPC system. XRLs to be resolved
by the Finder may address a target by class name or by instancename. The Finder treats the first instance in
a class as the primary instance of that class and XRLs directed to a class resolve equivalently to the primary
instance.

The class of an XRL Target dictates which methods the target supports. Interfaces are collections of
XRLs that relate to some aspect of functionality and objectsin a given class implement handlers for one
or more interfaces. Once an XRL Target has registered its presence with the Finder, it registers the XRLs
associated with the interfaces it supports. XRLs are registered one at a time and only when all of the XRLs
have been registered does the XRL Target become visible to the outside world through the Finder.

The Finder provides a one-to-many mapping service. Each XRLTarget may specify multiple protocol
families for each XRL they export. When a target requests theresolution of an XRL, the answer will contain
the complete list of available resolutions and the resolvercan decide which it would prefer to use. When
registering the target indicates the XRL method name and an appropriate protocol family. so targets that
support multiple protocol families perform a separate registration each XRL and protocol family pair. This
provides a flexible system for implementing optimizations on the level of individual XRLs.

There is a slight subtlety with registration for the sake of security. This arises because some of the
protocol families that can be used to communicate XRLs and responses to XRLs allow for remote access,
examples being UDP and TCP protocol families. The source code to the XORP project is publicly available
and the XRL interfaces and targets are included the package.With knowledge of the XRL interfaces and
targets it would be relatively straightforward for external parties to opportunistically dispatch XRLs on
a XORP router. However, if XRL communication can be coerced to use the Finder, access control can
be enforced centrally. To achieve this, the Finder performsXRL method name transformation. When an
XRL is registered with the Finder, the Finder transforms theresolved form of the XRLs method name, and
instructs the registering target to dispatch the transformed name as if it were the original name. The method
name transformation is designed to be hard to counter and each XRL method is transformed uniquely. The
registering process therefore has to maintain a mapping table from the interface.

In addition to handle XRL registrations and resolutions, the Finder is capable of notifying XRL Targets
about events it is aware of, like the birth and death of other XRL Targets. The Finder exposes an XRL
interface for this purpose and is able to invoke XRLs on XRL Targets to perform the notification. A special
tunneling mechanism exists in the communication protocol used to communicate with the Finder for this
purpose. The details of this communication will be expandedupon later on [XXX in a later edit to this
document].

4 Components of XRL Framework

XRL an inter-process call that is transparent to the underlyingtransport method.

4

Finder the process that co-ordinates the resolution of target names into a parseable form to find the XRL
Protocol Family Listener.

XRL Router an object responsible for sending and receiving XRLs. They manage all the underlying inter-
actions and are the interface that users are expected to use for XRL interactions.

Finder Client an object associated with an XRL Router that manages the communication with the Finder.

XRL Protocol Family a supported transport mechanism for the invoked XRL.

XRL Protocol Family Sender an entity that dispatches XRL requests and handles responses. Senders are
created based on Finder lookup’s of the appropriate communication mechanism.

XRL Protocol Family Listener an entity that listens for incoming requests, dispatches the necessary hook,
and sends the responses. When Listeners are created they register the appropriate mapping with the
Finder so that corresponding Senders can be instantiated totalk with them.

The kdoc documentation provides details of the particular classes.

A Modification History

• December 11, 2002: Initial version 0.1 completed.

• March 10, 2003: Updated to match XORP release 0.2: No significant changes.

• June 9, 2003: Updated to match XORP release 0.3: Miscellaneous cleanup.

• August 28, 2003: Updated to match XORP release 0.4: No changes.

• November 6, 2003: Updated to match XORP release 0.5: No changes.

• July 8, 2004: Updated to match XORP release 1.0: No changes.

• April 13, 2005: Updated to match XORP release 1.1: No significant changes.

• March 8, 2006: Updated to match XORP release 1.2: No changes.

• August 2, 2006: Updated to match XORP release 1.3: Added “Modification History” appendix.

• March 20, 2007: Updated to match XORP release 1.4: No changes.

• July 22, 2008: Updated to match XORP release 1.5: No changes.

References

[1] XRL Interfaces: Specification and Tools. XORP technicaldocument. http://www.xorp.org/.

5

