
Implementing NAT support into the XORP
project.

M.Sc. Thesis

Kristen Nielsen
kristen@diku.dk, krn@krn.dk

January 20, 2008
Final Version

Department of Computer Science
University of Copenhagen

Denmark



ii



Contents

1 Introduction and Conclusion 1

2 An introduction to the XORP project 3
2.1 XORP overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 XORP modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 XORP system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 A short introduction to write a XORP module . . . . . . . . . . . . . . . . 9

3 A Model of Network Address Translation (NAT) 15
3.1 Definition of terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 What is NAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 A detailed description of NAT . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 A detailed description of NAPT . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 A detailed description of LS-NAT . . . . . . . . . . . . . . . . . . . . . . 26

4 Analysis of current NAT implementations 31
4.1 Analyzing existing NAT implementations . . . . . . . . . . . . . . . . . . 31
4.2 The Cisco NAT implementation . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Juniper NAT implementation . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4 FreeBSD NAT implementation . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5 A configuration language for XORP NAT 37
5.1 Defining a model and a configuration language . . . . . . . . . . . . . . . 37
5.2 The network environment used in analyzing the model . . . . . . . . . . . 38
5.3 Can we configure a multi sided NAT . . . . . . . . . . . . . . . . . . . . . 40
5.4 What did we learn from the multi way NAT example . . . . . . . . . . . . 42
5.5 Some details of Load Sharing NAT configuration . . . . . . . . . . . . . . 43
5.6 Protocol and sub-protocol specification language . . . . . . . . . . . . . . 44
5.7 The IP specification language definition . . . . . . . . . . . . . . . . . . . 46
5.8 The full XORP NAT configuration language . . . . . . . . . . . . . . . . . 49
5.9 Description of the XORP NAT configuration language . . . . . . . . . . . 50
5.10 Evaluating the XORP NAT configuration language . . . . . . . . . . . . . 56

6 Implementation 59
6.1 The XORP NAT module environment . . . . . . . . . . . . . . . . . . . . 59
6.2 The XORP NAT module . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 The XORP NAT XRL interface . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 The XORP NAT Configuration storage . . . . . . . . . . . . . . . . . . . . 63
6.5 The XORP NAT Configuration generator . . . . . . . . . . . . . . . . . . 66
6.6 Other functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.7 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

iii



iv CONTENTS

A Names of protocols and sub-protocols (ports) 69

Glossary 77



List of Figures

2.1 XORP external Resource Locator (XRL) . . . . . . . . . . . . . . . . . . . 4
2.2 XORP processes overview . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 XORP configuration syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 XORP XRL interface description language . . . . . . . . . . . . . . . . . 10
2.5 XORP XRL Interface Description Language .xif file syntax . . . . . . . 11
2.6 XORP template file .tp . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 XORP Process Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Global and Local NAT definitions . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Schematic NAT overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 NAT translation of IP packet from host H1 to host H3 . . . . . . . . . . . . 21
3.4 NAT translation of IP packet from host H3 back to host H1 . . . . . . . . . 21
3.5 NAT translation of IP packet from host H2 to host H3 . . . . . . . . . . . . 22
3.6 NAT translation of IP packet from host H3 back to host H2 . . . . . . . . . 22
3.7 NAT IP packet from host H2 to host H4 . . . . . . . . . . . . . . . . . . . 22
3.8 NAPT schematic overview. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.9 NAPT translation of IP packet from host H3 to host H1 . . . . . . . . . . . 24
3.10 NAPT translation of return IP packet from host H1 back to host H3 . . . . . 24
3.11 NAPT translation of IP packet from host H4 to host H1 . . . . . . . . . . . 25
3.12 NAPT translation of IP packet returning from host H1 back to host H4 . . . 25
3.13 NAPT static translation of IP packet from host H1 to host H4 . . . . . . . . 26
3.14 NAPT translation of outside IP packet with no table match . . . . . . . . . 26
3.15 LS-NAT schematic overview . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.16 LS-NAT translation of client IP packet from client H1 to host H3 . . . . . . 28
3.17 LS-NAT translation of returned IP packet from host H3 back to client H1 . 28
3.18 LS-NAT translation of client H2 IP packet . . . . . . . . . . . . . . . . . . 29
3.19 LS-NAT translation of returned IP packet from host H4 back to client H2 . 29

4.1 Cisco schematic NAT diagram . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Cisco NAT configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Juniper JUNOS NAT configuration . . . . . . . . . . . . . . . . . . . . . . 35

5.1 2 way NAT. 3 realms connected with 3 NAT devices . . . . . . . . . . . . . 38
5.2 Multi way NAT with 3 realms . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Multi way NAT configuration . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 LS-NAT configuration example 1 . . . . . . . . . . . . . . . . . . . . . . . 44
5.5 LS-NAT configuration example 2 . . . . . . . . . . . . . . . . . . . . . . . 45
5.6 Protocol and port definition language . . . . . . . . . . . . . . . . . . . . . 46
5.7 IPv4 address and subnet mask specification language . . . . . . . . . . . . 47
5.8 IP address and subnet mask language syntax for IPv4 IP addresses . . . . . 47
5.9 IP address and subnet mask language syntax for IPv6 IP addresses . . . . . 47
5.10 IP address, subnet mask, protocol and sub-protocol definition language . . . 48

v



vi LIST OF FIGURES

5.11 Extension of the IP definition language 5.8 and figure 5.9 . . . . . . . . . . 48
5.12 Complete language for definition of IP addresses, protocols and interfaces . 48
5.13 The inside and outside clauses with the new proposed syntax . . . . . 56
5.14 A configuration example of the language described in figure 5.13 . . . . . . 56
5.15 Configuration with Static NAT translation . . . . . . . . . . . . . . . . . . 57
5.16 Configuration with Static NAT translation . . . . . . . . . . . . . . . . . . 57
5.17 Configuration with dynamic NAT . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Configuration flow within the XORP system . . . . . . . . . . . . . . . . . 59
6.2 XORP NAT module block view . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 XRL interface functions for the XORP NAT module . . . . . . . . . . . . . 61
6.4 Object inheritance for the XrlNatNode class . . . . . . . . . . . . . . . . . 63
6.5 C++ member functions in the XRL interface of XORP NAT module . . . . 64
6.6 Relations between objects in the XORP NAT configuration storage . . . . . 64

A.1 Protocol names known in XORP NAT - long version . . . . . . . . . . . . 72
A.2 Protocol names known in the XORP NAT module - short version . . . . . . 72
A.3 TCP/UDP port numbers and names known in XORP NAT - long version . . 74
A.4 TCP/UDP port names and numbers known in XORP NAT - short version . 75



Acknowledgments

During the project time (January 2006 to Marts 2007), I have got great support from the
people who shared the S.226 office at Diku with me, with whom I shared the lunch and
coffee breaks and who was there to discuss ideas of the day, artifacts of the C++ languages
and other topics on my mind during the time of the project but most of all for just being
there. The persons I specially would like to thank in this respect are: Pelle Kristian Lau-
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Chapter 1

Introduction and Conclusion

Why this project?
We have chosen this project as we would like to evaluate the eXtensible Open Router Plat-
form (XORP) as the platform for our future master thesis project. Making a smaller project
with the XORP platform before using it in our master thesis project will give us a better
understanding of the XORP system, how it is put together and how it works internally. We
have chosen the Network Address Translation (NAT) project because it seemed as a small
project, and because NAT functionality is not yet implemented in the XORP project.

By working with an already established source code base, we believed that we would
not risk falling into the ”we only use the C++ code technologies we already know about”
trap. So by choosing an established project with a substantial code base we expect to learn
new ways of C++ coding and to get inspiration from how other programmers are using the
language.

Last but not least we believe that working with a real project is of great value to the
enthusiasm we put into the work, as it may be used by other people for real things and not
only be “our” project.

A few initial words about XORP and our NAT project
XORP out of the box, has no support for NAT, which in our opinion is need-to-have func-
tionality for an Internet router to be usable for most Internet users. The XORP project has
a vision of having a rich feature set enabling it to function as a backbone router, at least
somewhere at the edge of core backbone networks. This means that all functionality of
main Internet backbone routers must be supported by XORP routers too.

Routers located at core networks are not using NAT a whole lot, but routers located
at the edge of core network or at customers premises does often use NAT. Having NAT
the XORP router will be much more usable for low end or home users, which will help
acquiring a larger user base and give XORP a wider deployment.

If NAT is going to be used with XORP today (before we implement NAT support), NAT
has to be configured at the supporting operating system and then the XORP configuration
file must be configured in such a way that it works with the pre-configured NAT of the host
operating system.

During this project we will add functionality to the XORP configuration language and
write a NAT module for XORP that handles the NAT part of XORP. As a first try we will
use the native NAT on FreeBSD, called “natd”, later we will plan adding support enabling
the same XORP NAT configuration to be implemented (executed) by the Click project [18]
IP forwarding subsystem. This will give us more sophisticated NAT functionality which
we will plan with during the project.

1



2 CHAPTER 1. INTRODUCTION AND CONCLUSION

Conclusion
A first proposal for the NAT module interface and the configuration syntax has been dis-
cussed with the XORP project, and the outcome of this led us to choose the “protocol”
and “sub protocol” terms, as they requested a more generic framework that supported all
protocols that can be carried by an IP packet and not only the TCP/UDP ports. This com-
bined with the large number of parameters needed to configure the 3 types of NAT (static,
dynamic and load-sharing) we are planning to have support for, directed us towards the
path of putting effort into designing new syntaxes for XORP to ease the specification of
IP addresses, IP subnets and IP ranges as well as protocol and port numbers (which we
call sub-protocols) and finally adding the ability to add interface and virtual interfaces to
the configuration language. All this reduces the number of parameters for a NAT interface
from 7 to one and highly reduces the complexity of our configuration language and gives
better readability of XORP NAT configurations.

The only thing we did not add to the defined syntax is the possibility to define a realm
which we probably will/should do at a later time as it appears to be a relevant extension.

We have used a large amount of time to get acquainted to the XORP code and how
things are working internally in XORP. We also used quite some time on trying to get the
Click code to work at the FreeBSD 6 release kernel, but had to go back using FreeBSD
release 4.9 to get Click support in kernel mode. We have put great effort into creating a
generic framework for configuring NAT with support for all the many flavors NAT comes
in as we learned during the analysis of existing NAT implementations. We decided on
having a generic configuration syntax and then knowing that if a given configuration can
not be “produced” by a given NAT module (in the IP path) we will issue an error message
to inform about this.

We have implemented all described functionality, the full syntax as shown in section
5.8 at page 49 except the configuration generator module and the code to implement the
fea {} clause of the configuration language. We still need some more testing to be done
before releasing the code to the XORP project. The new syntaxes for protocol and sub
protocols we proposed in section 5.6 and 5.7 has not been implemented during the project.

It has been an interesting project but we clearly underestimated the effort needed to
get acquainted with the XORP code base and the effort we had to put into designing a
general configuration language for the module. At the same time we learned that our C++
knowledge was not as updated as we believed it was, so we had to get newer versions of
the C++ books to understand the new syntaxes used in the C++ of today.

The project has been really interesting to do and we hope that the XORP project will
use some of what we created and import it into their code base.

Kristen Nielsen
Diku / Computer Science Department, University of Copenhagen
kristen@diku.dk, krn@krn.dk
10. Marts 2007.



Chapter 2

An introduction to the XORP
project

This chapter introduces the eXtensible Open Router Platform (XORP) to the reader unfa-
miliar with the XORP project and the overall design of XORP. We provide a short intro-
duction to the XORP project goals and to each of the modules which is a part of XORP.
Finally we provide a short description of how to implement or add a new module into the
XORP project.

This chapter is inspired by the XORP document “XORP Design Overview” [1] and the
“XORP Software status page” [2].

2.1 XORP overview
The XORP homepage1 says it like this:

“XORP is the eXtensible Open Router Platform. Our goal is to develop an
open source software router platform that is stable and fully featured enough
for production use, and flexible and extensible enough to enable network re-
search. Currently XORP implements routing protocols for IPv4 and IPv6 and
a unified means to configure them. In future, we would also like to support
custom hardware and software forwarding architectures.”

XORP has been around since January 2003, where version 0.1 was released, the XORP
project has on a regular basis released versions with enhanced functionality. Today (Novem-
ber 2006), we have release 1.3 of XORP. XORP have a good overall design documentation
which will be referenced throughout this report, but to introduce the reader to the overall
design of XORP we have included a (not so) short introduction to the XORP design and
modules here.

XORP is running on top of a host operating system (Host OS), which natively is
FreeBSD but Linux (more distributions), Mac OS X and even MS Windows 2003 Server
are current possible host operating systems. Some XORP features might not yet be imple-
mented at some of the host OS’es.

Generally XORP has modularity as the overall design concept. Every module of the
router is a separate Unix process at the host operating system. To facilitate future hardware
with more processors or dedicated packet forwarding subsystems all communication be-
tween XORP modules is done via a unified communication system that facilitates modules
can be executed at different hardware which are connected with some kind of communica-
tion path e.g. an IP network, or a high-speed internal backplane bus between the individual

1http://www.xorp.org

3



4 CHAPTER 2. AN INTRODUCTION TO THE XORP PROJECT

processors. In XORP communication between modules is done with eXternal Resource
Locators (XRL).

XRLs looks much like URLs known from the World Wide Web. Figure 2.1 shows a
example of an XRL and explains the various parts. The Protocol Family, the Interface
specification and the arguments.

finder://fea/fti/0.1/add_route?net:ipv4net=10.0.0.1/8&gateway:ipv4=192.150.187.1
+----- +-- +-- +-- +-------- +------------------------------------------------
| | | | | | ======= ==== =============
| | | | Method Arguments ˆ ˆ ˆ
| | | | Parameter name -| | |
| | | Interface version | |
| | | Parameter type --------| |
| | Interface Name |
| | Parameter value -----------------|
| Protocol Parameters
|
Protocol Family

Figure 2.1: Example of an XORP external Resource Locater (XRL). The figure define the various
parts of an XRL. Arguments starts with the question mark “?” Character and are separated with
the ampersand Character “&”. The base example is from the XORP Inter-Process Communication
Library Overview document [5].

XORP is deliberately not a multi-threaded architecture which reduces the design re-
quirements and complexity of the individual XORP modules and eliminates the limits that
a multi-threaded architecture adds to the programming rules.

2.2 XORP modules
XORP consists of a number of modules. Every XORP module is implemented as a separate
operating system (Unix) process. Throughout this chapter we use the term module but
process would have been an equal correct term to use here. The modules are divided into
3 main groups: Management modules, Unicast modules, Multicast modules and the few
modules that don’t fit into these classes are grouped under the “Other modules” group.
The individual XORP modules/processes are depicted in figure 2.2 and described in the
remaining parts of this section:

Figure 2.2: XORP processes overview. The figure is from the XORP Design Overview docu-
ment [1].
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Management modules

Inter-Process Communication (IPC) Finder

The IPC finder is needed by the XRL communication method used among all XORP com-
ponents. Each of the XORP components registers with the IPC finder. The finder assists
the XRL communications by knowing the location of each XRL target, therefore a XORP
process does not need to know explicitly the location of all other process, or how to commu-
nicate with them. The router manager process (rtrmgr) incorporates a finder, so a separate
finder process is only needed if the rtrmgr is not being used such as during testing. For
more information about the IPC finder and XRLs see these XORP documents: “XORP
Inter-Process Communication Library” [5] and “XORP XRL Interfaces: Specification and
tools” [12].

XORP Router Manager (rtrmgr)

The rtrmgr is the XORP process responsible for starting all components of the router, to
configure each of them, and to monitor and restart any failing process. It also provides the
interface for the Command Line Interface (CLI) to change the router configuration. For
more information about the rtrmgr see “XORP Router Manager Process” [10].

Command Line Interface (CLI) xorpsh

The CLI can be used by a user to access the router, view its internal state, or to configure
it on-the-fly. Its functionality is closely related to the rtrmgr. However, because the ro-
bustness of the rtrmgr itself is extremely important, all functionality that can be run as a
separate CLI process are separated from the rtrmgr. The process implementing this CLI
functionality is called xorpsh. For more information about the CLI and the xorpsh process
see “XORP User Manual” [13].

Simple Network Management Process (SNMP) module

This is the SNMP management process of XORP. It is used for SNMP access to the router.
For Example, it can be used to translate SNMP requests into XRL requests. Internally,
SNMP will communicate with the other processes using XRLs. For more information
about the XORP SNMP module see the document ”XORP SNMP Agent” [14].

Routing Policy module (Policy) module

This is the XORP routing policies coordination process2 The policy module basically works
by checking the routes or other data that are policed by the module ensuring that the global
policies are respected. As an example: if import of routes from OSPF into BGP are po-
liced by the module, each of the involved modules can ask if a given route is blocked or
allowed by the current policy. The policy module interacts with all routing protocols and
the Routing Information Base (RIB) and instructs them how to handle the routes flowing
to or from the system, export rules from one protocol to another, modify or remove routes
as they flow through the system, etc. Currently only unicast policies are supported by
the policy module. Policy is a newly added feature of XORP and the number of modules
that implements policy functions is growing as this is currently being implemented. For
more information about the XORP policy module see the paper: “Decoupling Policy from
Protocols: Implementation Issues in Extensible IP Router Software” [16].

2The Routing Policies module is not shown on the figure 2.2.
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Unicast routing modules

Border Gateway Protocol version 4+ (BGP4+) module
This is the BGP routing daemon. It implements IPv4 and IPv6 unicast routing in a single
process, as well as Multicast BGP4 (MBGP4) for both IPv4 and IPv6 multicast RIB for
multicast routing purpose. For more information about the BGP see “XORP BGP Routing
Daemon” [3] and rfc-4271 [35].

Open Shortest Path First (OSPF) module
This is the OSPF routing daemon. There are separate IPv4 and IPv6 daemons, because
unlike BGP there is no real need to tie them together. For more information about the
OSPF module see the XORP website and the source code and rfc-2328 [29]. No separate
XORP document about the OSPF implementation has yet been released from the XORP
project.

Routing Information Protocol (RIP) module
This is the RIP routing daemon. Similarly to OSPF, the IPv4 and IPv6 daemons are sepa-
rate. For more information about RIP see “RFC-2453. RIP Version 2.” rfc-2453 [30].

Intermediate System - Intermediate System (IS-IS) module
This is the IS-IS routing daemon. The is-is routing protocol derives from the OSI network
specification. The XORP IS-IS project is not yet published.

Multicast routing modules
The overall design of the multicast routing system is described in the XORP design docu-
ment “XORP Multicast Routing Design Architecture” [8].

Protocol Independent Multicast – Sparse mode (PIM-SM) module
This is the PIM-SM module. For more information see the “PIM-SM Routing Daemon”
document [9].

Internet Group Management Protocol / Multicast Listener Discovery
(IGMP/MLD) module
This is the MLD/IGMP handler. It implements the router-side part of MLD and IGMP
protocol. Its main purpose is to discover local multicast members and propagate this in-
formation to multicast routing daemons such as PIM-SM. The IGMP (IPv4) and MLD
(IPv6) daemons are separate implemented modules. For more information about the XORP
MLD/IGMP implementation see “XORP MLD/IGMP Daemon” [6].

Other modules

Forwarding Entity Abstraction (FEA) module
The Forwarding Entity Abstraction (FEA) is a common interface towards the packet for-
warding hardware. The FEA controls all network interface cards at the hosting OS (e.g.
issuing proper ifconfig commands etc.), installs multicast support, and is also respon-
sible for the communication with the Click modular router system if installed.
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By definition XORP network interfaces has a two level hierarchy. The real (physical)
interfaces are called interfaces and virtual interfaces are called vif. All IP setup is
done at the vif level. If an physical interface like an Ethernet NIC is capable of handling
virtual LANs (VLAN) these are defined as a sub interface of the physical interface as a
vif for each VLAN. If no virtual layer is existing at an real interface, a vif must still be
configured to define the IP-interface for this interface card. The names for interfaces are
usually the names used by the hosting OS for a given interface. Vif names are usually the
same with an added decimal number to identify the VLAN.

The multicast-related functionalities are logically separated from the unicast-based func-
tionalities in the Multicast Forwarding Engine Abstraction (MFEA), though the MFEA is
part of the FEA process.

The FEA is described in more detail in the XORP document: “XORP Forwarding
Engine Abstraction” [4], and the MFEA is described in the XORP document “XORP Mul-
ticast Forwarding Abstraction” [7].

Routing information Base (RIB) module
The RIB holds a user-space copy of the entire routing/forwarding table, complete with
information about where each route originated from (e.g. which protocol, and when).
For more information about the RIB see “ XORP Routing Information Base (RIB) Pro-
cess” [11].

Forwarding Engine (FE) subsystem
The forwarding engine is the underlaying IP subsystem that handles the actual IP packet
stream that passes through the XORP host. It is usually the default IP subsystem of the
XORP host, but it can also be a Click modular router module that handles the packets
being routed. Theoretically it can also be custom made IP subsystem, e.g. implemented at
a multi port Network Interface Card (NIC) which is capable of routing IP packets between
its local ports - and this way off-loading the IP subsystem of the XORP host.

When the native NAT of FreeBSD (natd) is used in our project we will have to instruct
the IP subsystem to divert IP packets to the NAT module that lives as a user land process,
communicating with the IP subsystem via a socket. Commands for the IP divert, a FreeBSD
kernel module, can specify an ACL that selects the IP ranges that is diverted through the
natd module. We will as a default have all packets diverted through the natd module.

Click modular router
The Click modular router project has been written by Eddie Kohler and is described thor-
oughly in his PhD thesis [19]. The Click project homepage [18] is carrying all documenta-
tion about the project.

The Click modular router is a router which has modules as the basic building blocks.
Click modules shares a common interface structure, which enables modules to be con-
nected together as described in the configuration file - in coarse the principle is similar to
a number of UNIX shell commands piped together. The ability to combine small function
modules into a system that e.g. works as an IP packet forwarding system, a NAT device,
a Switch or an IP router. It has the possibility to work both at the Ethernet layer (layer
2) and IP packets layer (layer 3) and higher layers such as UDP or TCP. A library of well
written and tested modules is distributed with Click easing the startup learning curve. Click
has a configuration language to describe the desired configuration. The language describes
which modules are connected together and in this way describes the desired module setup
or system function.

On a few platforms Click are implemented as a loadable kernel module and on the rest
of the supported platforms, click is only supported as a user land module that communicate
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with the underlaying IP subsystem with methods like IP divert. Both implementations has
the same set of features, understands the same configuration files and loads the same Click
modules - only the speed differs between kernel and user land variations. XORP already
has support for specifying Click configurations in the FEA module.

Our intent is to use the click IPRewriter [20] module as the advanced NAT function
device supported by this project. Click has a number of modules that is designed to perform
packet rewriting and NAT/NAPT (explained later) translation of IP packets. We might need
to use a few other modules than the IPRewriter module to implement full NAT functionality.

2.3 XORP system overview

The XORP system has a overall manager module, called The XORP route manager (RTR-
MGR), its main task is to read the XORP configuration file, interpret it and communicate
the contents to the rest of the modules in the XORP router. To produce the setup described
in the XORP configuration file, the router manager builds an “in-memory” configuration
tree where each configuration clause is stored in its own node. The configuration tree holds
the running configuration of the router. Users can interactively via the XORP shell (xorpsh)
change the content and hence the running configuration of the XORP router, e.g. if an IP
address of an interface is changed in the in-memory configuration tree, the XORP rtrmgr
communicates this to the FEA which issues a proper command to the underlaying hardware
to change the IP address of the interface.

Templates for the xorpsh and rtrmgr

The rtrmgr and the xorpsh uses templates that describes functionality for each module
included in the XORP project.

Templates defines the structure of the configuration tree for each node and the names
and types of the parameters. Templates contains a header and a number of sections.

The header defines which other modules the current template depends on. This is used
by the rtrmgr to startup the needed modules only.

One section contains the information about what actions to issue to the various XORP
modules to implement the functionality expressed in a given in-memory configuration
node. Actions can typically be: establishing, changing or deletion of functionality con-
tained in a given node and what XRL calls to issue for each node to achieve the desired
action. Another section of the template file contains help texts (short and long versions) for
the interactive user using the xorpsh CLI interface program.

Templates control the syntax and parameter types of each node in the in-memory con-
figuration tree, allowed value ranges for each parameter and what actions (XRL commands)
to be executed when configuration parameters are added, deleted or changed. The template
also describes where in the configuration tree the parameters for each XRL call issued to a
module are stored (or fetched).

XORP Shell (xorpsh)

The user interface for XORP is the xorp shell which is implemented in the program called
xorpsh. The XORP shell connects to the RTRMGR to get access to the in-memory con-
figuration tree to access the current configuration of the XORP system and also uses the
templates that describes each modules. The XORP shell implements the CLI through which
the users controls and configure the XORP system.

When a node or a parameter is crated, edited or deleted the XORP shell notifies the
RTRMGR which then perform the changes in the in-memory configuration tree and calls
the relevant actions according to the nodes template file to implement these.
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2.4 A short introduction to write a XORP module

To get an idea of what steps is involved in writing and adding a new module to the XORP
project, we will try to give a brief overview of this in this section. The tasks involved in
implementing a new XORP module are:

• Write a configuration syntax for the module functionality.

• Design an module interface and write a XRL interface file to the module. (.xif
and .tgt files)

• Write a RTRMGR template for the module. (.tp file)

• Write the XORP module code that implements the desired functionality when con-
figured via the XRL interface.

• Eventually implement the needed (extra) functionality in the FEA module and other
modules that directly calls the module. (This part is not described further in this
project.)

• Eventually write helper tools for the rtrmgr. These are most often used for output
listings of e.g. interface setups etc. (This part is not described further in this project.)

Writing a configuration syntax

A XORP configuration syntax determines the structure of the syntax and configurable ele-
ments of the XORP module. XORP configuration syntax is modelled over a tree structure.
At each branch in the tree either one single “unnamed” node or a number of named nodes
can exist. At the same time each branch (node) can have can have a number of named leaves
which we call parameters in this project. Each leave contains one typed data variable. A
small example from the configuration syntax for the NAT module is given in figure 2.3.
The example defines a status-native-nat: parameter that returns a boolean param-
eter named “ok” in the fea{} clause. The status-native-nat: parameter returns
the status of the natd subsystem as a boolean parameter. The example also defines a nat
id:txt {} clause with the name stored in the text parameter “id:”. The nat {} clause
contains a new named node native-nat id:txt {} with the name stored in the text
parameter “id:” and witch has 2 parameters: a boolean parameter named disable: and
a text parameter named natd-command:. The tree structure and the node and param-
eter names described in this syntax, matches the structure that is used in the in-memory
configuration tree, in the CLI and in the configuration file.

fea {
status-native-nat: <ok:bool>

nat <id:txt> {
native-nat <id:txt> {

disable: <disabled:bool>
nat-command: <nat-command:txt>

}
}

}

Figure 2.3: Example of the XORP configuration syntax. The language used in the description is not
a formal specification of XORP.
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Designing a XORP module XRL interface

Writing a new XORP module requires the design of an XRL interface that fits the desired
functions of the module. This task is similar to normal software design principles. You can
freely choose to have many small functions or fewer larger functions. We have the funda-
mental idea designing our XRL that each XRL calls should contain a unit of knowledge,
which is somehow self-explaining in the context it is described in. E.g. a XRL call to setup
a NAT translation rule, holding/releasing the configuration generation mechanism. In some
modules this resolves to a large number of XRL interfaces and in other it resolves to fewer
interfaces.

During the next pages we will give an example of how our XRL interface design is
done by explaining a small part of the rtrmgr template file for the fea natd interface.
We describe the configuration syntax used in figure 2.3 at page 9 and what each part is
doing. This (we hope) gives an overall idea of the function (or role) of the template file.

Writing an XRL interface

XORP is a modular structured and template based system where each part of XORP is a self
contained Unix process that communicates with the remaining parts of the XORP system
via XRL calls. The XRL interface of each module is defined by an interface description
file with the extension .xif The list of other module names that a given XORP module
is communicating with is defined in a target description file .tgt. From these two files
XORP generates module interfaces for the XRL communication to and from the module
and the matching stub code to include into the calling modules. Code for marshalling
and unmarshalling of the parameters sent via XRL calls between XORP modules are also
generated from these 2 files. The .tgt file is not further described here.

The XORP module interface is modelled from the configuration syntax and the design
of the new module. The basic idea is that each XRL call is creating a self-contained unit
of configuration knowledge, that either is defined or not defined as a whole. That is why
we chose to combine the nat {} and native-nat {} nodes into one interface descrip-
tion file (.xif). A short overview of the XRL interface description language used in the
.xif file is given in figure 2.4 below. An example of an .xif file is given in figure
2.5 below. Each interface description is contained on a single line. If the definition is
too long a <backslash><new-line> character sequence is used as a non terminat-
ing <new-line> character (which is an accepted standard method used in ASCII files).
The whole language is defined in the XORP technical document ”XORP XRL interfaces:
Specification and Tools.” [12].

interface ::= <interface-name>/<interface-version> { <xrl-method-list> }
interface-name ::= <identifier>
interface-version ::= <digits>.<digits>
xrl-method-list ::= <xrl-method> [<xrl-method>...]
xrl-method ::= <function-name> [?<argument> [&<argument>...]]

[ -> <return-parameter> [&<return-parameter>...]]<new-line>
function-name ::= <identifier>
variable-name ::= <identifier>
return-parameter ::= <variable-name>:<type>
identifier ::= <letter>[[<letter>|<digit>]...]
argument ::= <variable-name>:<type>
type ::= u32|u32range|i32|txt|bool|toggle|ipv4|ipv4net|ipv4range

|ipv6|ipv6net|ipv6range|macadder|com32

Figure 2.4: A brief overview of the XRL interface description language used in the .xif files.
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interface natd/0.1 {

status_natd -> ok:bool
create_native_nat ? id:txt & disabled:bool & natd_command:txt
delete_native_nat ? id:txt & disabled:bool & natd_command:txt

}

Figure 2.5: Example of the XORP .xif file syntax. The example shows the status natd
call that has a boolean ok parameter which is returned to the calling function and the
create native nat and delete native nat calls which each takes 3 arguments from the
calling module.

Writing a template for the module

We provide a small XORP template example that shows the template matching the above
examples. Although it might seem a bit complicated the example is a good way to gain
some basic understanding of what functionality and mechanisms the XORP template files
provides.

Figure 2.6 shows the template matching the examples from figure 2.5. The example de-
fines the in-memory (and configuration file) tree-node layout which is explained in details
below:

Line 1–10: Defines the node-tree syntax and the data type of each node. Line 12–49:
Defines the properties, help texts and actions to execute (by the rtrmgr) when each node is
changed.

Line 13: Informs the rtrmgr that the current file provides the functionality in the XORP
system called “natd”. Line 14: Declares the functionality defined in the current file de-
pends on the functionality in the module named “fea”. Line 15: Tells the rtrmgr where
to find the executable for this xorp module at runtime. Line 16: Sets the default name
for the targetname node in this module. The targetname node contains the name
that the module uses when identifying itself to the rtrmgr – this is a XORP convention.
Line 17: Instructs the rtrmgr that the targetname parameter has to be set before the
module is started up. Line 19–20: Defines the functions for the targetname in-memory
node. The %set:; command indicates that %set: is the (only) operation allowed at the
targetname node. There is no xrl command after the “:”, which means the value sup-
plied with the command or configuration will be set as the node value. If the %set: was
not specified then no set command is allowed at the node. If a xrl command was specified
this command is issued when the set operation is issued from the xorpsh CLI program (or
when loading a configuration file). Line 30: Sets a short (one-line) help text displayed to
the interactive user by the help command of the xorpsh CLI program.

Line 31: specifies the command that the rtrmgr executes when a native-nat node
(line 29–46) is created. The $(...) clauses refers to parameter substitution from the
in-memory configuration tree. The @ is the id parameter of the current node (here it repre-
sents the native-nat node name (a text parameter) from line 29). If the targetname node
contains “natd” the evaluation of the macro will give:
“fea.natd/natd/0.1/create native nat?id=natid&disable=false&natd-command=<natd-command>”.
The <natd-command> is the actual “natd-command” that is the argument to the “natd-
command” parameter. The <new-line inserted> (line 32 and 35) are editorial in-
serted line breaks which does not exist in the real file. Line 34: Is the xrl command executed
when a native-nat node (line 29–46) is deleted. Line 40: Is the command executed when
a get operation is performed on the node. This statement is empty which implicates that
a %get: operation will just return the value of the node. Besides the listed operations a
wider range of commands and parameters exists in the template vocabulary. The full set is
described in the XORP technical document “XORP Route Manager Process (rtrmgr)” [10].
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01: fea {
02: status-native-nat: bool;
03:
04: nat {
05: native-nat @: txt {
06: disable: toggle = false;
07: natd-command: txt;
08: }
09: }
10: }
11:
12: fea {
13: %modinfo: provides natd;
14: %modinfo: depends fea;
15: %modinfo: path "nat/xorp_nat";
16: %modinfo: default_targetname "natd"
17: %mandatory: $(@.targetname)
18:
19: targetname {
20: %set:;
21: }
22:
23: status-native-nat {
24: %help: short "returns true if natd subsystem is available on host.":
25: %get: xrl "$(fea.targetname)/natd/0.1/status_natd->ok:bool;
26: }
27:
28: nat {
29: native-nat @ {
30: %help: short "specifies a native-nat configuration"
31: %create: xrl "$(fea.targetname)/natd/0.1/create_native_nat?
32: <new-line inserted> id=$(@)&disabled=(@.disabled)&nat-command=$(@.nat-command)";
33:
34: %delete: xrl "$(fea.targetname)/natd/0.1/delete_native_nat?
35: <new-line inserted> id=$(@)&disabled=(@.disabled)&nat-command=$(@.nat-command)";
36:
37: disabled {
38: %help: short "disables the native-nat.";
39: %set:;
40: %get:;
41: }
42: nat-command {
43: %help: short "send a command to the native-nat.";
44: %set:;
45: }
46: }
47: }
48:}

Figure 2.6: Example of a XORP template file .tp. The “<new-line inserted>” markers marks line
breaks that is inserted to format very long lines to the page width, and is not a part of the real file.
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Writing the XORP module code
What properties are required for XORP module code? The XORP system puts a number
of requirements onto modules to fit into the system. Here is a list of the most important
requirements with a short description of each:

XRL interface: The module code must fit together with the C++ classes defined for the
XRL interface. The code for the XRL interface is automatically generated from
the interface description .xif and the target description .tgt files by the XORP
build process. The code also define virtual function definitions for each xrl interface
defined in the .xif file, that has to be implemented by the module programmer to
perform the desired operation at the module. The overall concept is that when some
XORP module generates an XRL call to our module the function pointed out by the
XRL call in our module is called (executed) with the parameters received. When
the module has done its work the function returns with results through parameters
according to the interface description. As XORP is a non multi-threaded architecture
the module is not allowed to block. This puts a requirement on the code that if it can
not finish its task immediately it has to return the XRL call immediately and use a
callback method to supply the results later. When return parameters are ready they
are returned to the (originally) calling instance via a registered call-back function (a
sort of a XRL pointer). Call back is an integral part of the XRL functionality and
an automatic generated feature of the XRL system. We do not further describe XRL
callbacks in this report but refer to the XORP document “An Introduction to Writing
a XORP Process” [15].

XRL error codes: XRL calls has a few status codes that is returned with each call. The
most often used code is the:

OKAY code which is the everything-is-normal return code which transfers the call
parameters to the other end.

All other return codes are error indicating codes indicating that the parameters is
not transferred to the other end. A few examples of theese are: BAD ARGS indicat-
ing that arguments are not valid, COMMAND FAILED indicating the XRL command
failed, NO FINDER indicating the finder is not found, RESOLVE FAILED indicat-
ing no receiver address is found and NO SUCH METHOD indicating that the method
(function) stated in the xrl is not found.

All error codes are indicating a serious error which signals that the XRL did not
execute normally at the other end. The full list of XRL error codes is found in the
$XORP/libxorp/xrl error.hh file where $XORP represents the base direc-
tory of the XORP source code.

Process model: XORP has its own process model which is depicted in figure 2.7 that de-
scribes which states a process can be in, and what transitions it can perform between
each of these. The process model is described in the source file $XORP/libxorp/
status codes.h. The following process states exists:

PROC NULL: Process is not registered with the finder. It may or may not be running.

PROC STARTUP: The process is registered with finder, but is waiting on some other
processes before it is ready to be configured.

PROC NOT READY: For any reason, the process is not ready for processes that de-
pend on this process to be configured or reconfigured. A common reason is that is
this process just received a configuration change, and is still in the process of making
the configuration change active.

PROC READY: Process is running normally. Processes that depend on the state of
this process can be configured or reconfigured.
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PROC SHUTDOWN: Process has received a shutdown request is shutting down cleanly.
Normally the process till terminate by itself after being in this state.

PROC FAILED: Process has suffered a fatal error, and is in the process of cleaning
up the mess. Normally the process will terminate by itself after being in this state.

PROC DONE: The process has completed operation, but is still capable of respond-
ing to XRLs.

+-------------> PROC_NULL
| |
| V
| PROC_STARTUP
| |
| V
| PROC_NOT_READY
| | ˆ
| V |
| PROC_READY
| / \
| V V
| PROC_SHUTDOWN PROC_FAILED
| \ /
| V V
| PROC_DONE
| |
| V
+-------------------+

Figure 2.7: The XORP Process Model and the names of each process state. The figure is from the
source file $XORP/libxorp/status codes.h

During the recent pages we have provided a short overview of the insights of writing a
XORP module. We have chosen to describe the parts needed to understand the discussion
and the description of the implementation of the XORP NAT module without going into a
too detailed level of XORP technicalities. We have tried to reference relevant documenta-
tion for topics which are further described in the XORP documentation.



Chapter 3

A Model of Network Address
Translation (NAT)

Introduction
The first part introduces and defines a number of terms used throughout this report. The sec-
ond part introduces Network Address Translation (NAT) terms and definitions and a num-
ber of NAT flavors. The third part introduces Network Address Port Translation (NAPT)
and explains the details with a number of examples. The fourth part describes load-sharing
NAT (LS-NAT) with detailed examples. Finally we provide a short recap of the entire
chapter.

3.1 Definition of terminology
In this section we will introduce and formalize the terms and expressions that we use
throughout this chapter.

IP address
IP-address is meaning a single IPv4 or IPv6 address. Mostly we only consider IPv4 ad-
dresses as NAT is not really applied to IPv6 network technology.

IP subnet mask / subnet mask
The IP subnet mask is a bit pattern that defines what parts of an IP-address are used for the
network address and what parts are used for the host address. Subnet masks consists of 24
bits (IP version 4) with the property of a row of 1-bits followed by a number of 0-bits. The
1-bits in the subnet mask tells that the corresponding bit in the host IP-address belongs to
the network-address, and the 0-bits tells that the corresponding host IP-address bits belongs
to the host IP-address of the IP-subnet.

The subnet mask only has local significance - which means that only the hosts and
routers connected to a specific IP-subnet needs to know about the subnet mask. All hosts
on a IP-subnet need to share the same subnet mask to have the same understanding of what
IP-subnet they belong to (as a change in the subnet mask changes the number of bits in the
IP-subnet address).

Subnet masks for IPv4 can be written in 2 different ways: As 4 groups of 3 digit decimal
numbers separated with dots e.g. 255.255.255.0 or as a 2 digit decimal number after
a slash stating the number of 1-bits in the subnet mask e.g. /24. The latter version is often

15
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printed together with an IP-address like this: 10.200.18.1/24, meaning the IP-address
10.200.18.1 with a 24 bits subnet mask (255.255.255.0).

IP-subnet / IP-network

IP-subnet and IP-network is both used with the same meaning throughout this report. A
IP-subnet is a range of IP-addresses starting at the IP-network address and ending with the
IP-broadcast address for the IP-subnet.

An IP-subnet is specified with an IP-address and a subnet mask. The number of IP-
addresses in the IP-subnet is calculated as the power of 2 to the number of 0-bits in the
subnet mask. (e.g. subnet mask 255.255.255.0 has 8 0-bits hence 256 IP-addresses
in the IP-subnet). Two of these are reserved, the first IP-address for the IP-subnet address
and the last (highest) IP-address for the IP-broadcast address - these can by definition not
be assigned to any hosts at the IP-subnet.

IP-subnet address

Is by definition the first (lowest) IP-address of an IP-network and is not to be assigned to
any host. The IP-subnet address has by definition all its host IP-address-bits set to “0”.

IP-broadcast address

The IP-broadcast address is the last IP-address in an IP-subnet. The Broadcast address is
used for sending packets to all IP hosts at the IP-subnet. By definition no host can have
the address of the IP-broadcast address, and the IP-broadcast address has all its the host
IP-address-bits set to “1”.

IP-range

An IP-range is a range of IP numbers defined by a low and a high IP-address. The IP-
address space is seen as one contiguous range of IP addresses (IPv4) from 0.0.0.0 to
255.255.255.255. The low parameter specifies the first IP-address in the range and the high
parameter specifies the last IP-address in the range. The low parameter must be smaller or
equal to the high parameter.

Protocol or IP-protocol

The term “protocol” is in this report used to identify which protocol an IP packet carries
at the next higher protocol level. The entry is covering protocols specified in rfc 3232 [34]
that defines higher level protocols and their numbers in the IP packet. Rfc 3232 refers to a
database kept at www.iana.org [36]) here is a list of often used protocols and their related
numbers in parenthesis. TCP(#6) see rfc 793 [22], UDP(#17) see rfc 768 [21], EGP(#8)
see rfc 888 [23], IPv6-in-IP(#0) see rfc 2003 [28] etc. (see the full list in Appendix A)

Sub-protocol

The term “sub protocol” is used for protocol entries under each protocol e.g. ports for
TCP, UDP defined by www.iana.org [37] and message types for ICMP also defined by
www.iana.org [38] etc.
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IP-session and IP-session-id
An IP-session is here defined as the flow of packets — as viewed on the wire — carrying
information for the same TCP connection. A TCP connection is defined as communication
between 2 ports. On the wire between the hosts communicating this will be seen as packets
with the same source IP-address, source port number and source protocol (which is also
TCP) and destination IP-address, protocol (which is TCP) and port number. In the NAT
(and firewall) area we broaden this definition a bit so UDP and in some cases even ICMP
messages-types can be used at the protocol part even if these protocols not formally has
a “connection” state defined. Packets with identical protocol and port-numbers at a given
IP-address often are related to e.g. the same higher level application, communicating with
some other host IP-address. These 4 (6) parameters are during the report as a whole called
the IP-session-id or the IP-session-id signature.

Local or internal addresses/network
“Local” or “internal” IP addresses are terms used for addresses not present on the Inter-
net. The terms applies to other networks where certain addresses are not “defined” in the
“greater” address plan for the network.

When private allocated network address ranges e.g. as defined by rfc 1597 [25] regard-
ing the Internet. These IP-address ranges is not used at the public Internet as the Internet
routing tables does not contain these addresses. Using address areas as defined in rfc 1597,
you are sure that no other hosts on the Internet are using these IP-ranges. This way you will
never have to face the problem of having the same IP address both at the internal network
and at the Internet and thus avoiding problems with IP-address ranges at the Internet which
are unreachable from your IP-network behind your NAT.

Global or Public addresses/network
“Global” or “Public” IP addresses are in general IP addresses that belongs to the address
plan of the Internet. The terms “Global” and “public” are often referring to the outside
interface of a NAT device. See figure 3.1.

Inside network
The “inside” network is a network that is typically connected to the inside interface of
a NAT device, or a network behind (or inside) a firewall. Figure 3.1 shows a typically
“inside” network relative to the NAT device. Often the inside IP-subnet contains more
defined IP-addresses seen from the NAT interfaces (LAN segment) than is seen from the
outside IP-subnet.

Outside network
The “outside” network is a network that is typically connected to the outside interface of a
NAT device or is located at the outside (in front of) a firewall. Figure 3.1 shows a typically
“outside” network relative to the NAT device. Often the IP-subnet at the outside interface of
a NAT device contains “fewer” defined IP-addresses compared to the inside NAT interface.

3.2 What is NAT
Network Address Translation (NAT) is most recently described by Internet Engineering
Task Force (IETF)1, in the RFC 2663 [31], in this way:

1IETF: www.ietf.org.
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“Network Address Translation is a method by which IP addresses are mapped
from one realm to another, in an attempt to provide transparent routing to
hosts. Traditionally NAT devices are used to connect an isolated address realm
with private unregistered addresses to an external realm with globally unique
registered addresses.”

Which means that beside what most users are using NAT for — to connect network seg-
ments with (possible) independent address plans. NAT is intended to be used to translate
addresses from one realm to another. Under normal use we do not often make the distinc-
tion of realms as we often use one e.g. Rfc 1597 IP-subnet together with addresses from
the Internet address plan, and we do not have any address conflict as Rfc 1597 IP-ranges
are deliberately not defined (by rfc 1597) at the Internet.

The term “Realm” often refers to kingdoms which can be understood as separate ad-
ministrative domains. Here “Realm” is used to describe separate IP address domains (or
kingdoms), e.g. IP address domains that is not necessary a part of the same IP (or the same
overall IP) address plan. Different IP worlds - which do not has any relation to each other.
No shared IP-addresses, no assumptions made of each other etc. NAT devices are intended
to translate IP-addresses between different realms by having an interface in each of them.

NAT interfaces - naming conventions
Despite the above definition which defines NAT as translating IP addresses from one realm
to another, we will use the terms “inside” and “outside” to describe the two interfaces of
a nat device. These terms are referring to the fact that one interface often is connected to
an internal (or private) network which is translated with the NAT device to an “outside” or
public network. So when we name one interface the “inside” NAT interface we mean the
side which has the “private” or the “many” IP addresses compared with the “outside” NAT
interface which often has only one or a smaller number of IP addresses at the connected
IP-subnet. NAT can be used as a one–to–one mapping between 2 IP networks – in which
case the two interfaces act the same way. In most NAT setups one interface of the NAT has
a larger address space configured than on the other NAT interface – and in these cases the
above definitions applies.

Figure 3.1: Global and Local NAT definitions. “X” is an IP router, “@” the Internet or similar global
network, “H” is IP hosts.

A few more types of NAT
NAT is often used as a daily term for what really is NAPT. The precise difference is that
NAT only translates IP addresses and NAPT translates both IP addresses and TCP and UDP
port numbers between the inside and outside networks. During this report we will use the
term NAT for both NAT and NAPT, when nothing more precise is mentioned.

When looking deeper into the nature of NAT we have to do further classification of
NAT and defining a few new subclasses. NAT is actually an overall name for at least 3
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ways of using the translation table that is the central element in all NAT devices. Here we
categorize the NAT classes into the following classes: Static NAT, Dynamic NAT and Load
Sharing NAT (LS-NAT). Each of these will be further described below.

Dynamic NAT

Dynamic nat is the most often used type of NAT. It is very often used when a private IP-
network is connected to the Internet via a single public IP-address allowing all hosts at the
private network to access services at the public Internet.

The “dynamic” part of the name refers to the fact that translation table entries are cre-
ated when needed for packets arriving at the inside NAT interface and going towards the
outside interface of the NAT device. This can be used in the “many” to “few” direction
through the NAT device. When an incoming packet arrives at the inside NAT interface, and
no NAT translation table entry exists for the IP-session to which the packet belongs, a new
table entry is created. This entry is present in the table until removed from the translation
table again.

Removal of dynamic created translation table entries can be done by several methods.
The most often (but naive) used method is that entries are removed after a certain timeout
when no packets for the connection has been seen for a predefined time. Other methods are
tracking each packet flow and remove the entry when a TCP FIN packet is seen (the TCP
Connection is closed), and use timeouts if sessions are never closed. For UDP which does
not have a connected state, the only way is to use a timer to expire table entries (or apply
interpretation for a higher protocol layer and get the information from there). This simple
solution are often used as a simple way to provide NAT transparency for e.g. voice or video
applications using UDP packet streams. The NAT is opened (a dynamic translation table
entry is created) by sending UDP packets (from the client host at the inside interface of the
NAT) through the NAT device to the stream server (located at the outside interface of the
NAT) adding a translation rule for the UDP packets with the same session-id. Then the NAT
translation rule exists when the service starts the stream of UDP packets e.g. Audio/Video
media stream from the server located at the outside NAT interface allowing the traffic to
pass through the NAT and reach the host at the inside network that opened (initiated) the
“connection” from the inside.

Static NAT

Static NAT is often used when an internal (e.g. web server) IP-address must be reachable
from an outside IP-address.

Static NAT is achieved by creating permanent entries in the NAT translation table. NAT
translation table entries are inserted by the network administrator when the NAT device is
configured. Removal of entries is done the same way.

A static NAT translation table entry is often used to create permanent translation table
entries to allow hosts from the outside network to access services offered by hosts residing
at the internal network.

As this has a one-to-many translation scheme and there is no way an algorithm (like in
dynamic NAT) automatically can define translation table entries for packets that initially
travels from the outside interface to the inside interface of the NAT.

Load Sharing NAT

Load Sharing NAT (LS-NAT) is another type of Static NAT which is described in rfc 2391 [32].
Load Sharing NAT is usable when we have a pool of internal servers configured to provide
the (exact) same service set to client hosts. A number of translation table entries are con-
figured by the NAT administrator one for each internal host offering the service. The table
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entries all share the same outside IP address and port number which we in the following
will name the “outside-service IP-address”.

When a packet arrives at the ”outside-service IP-address” located at the outside NAT
interface, its IP-session-id is looked up in the translation table if a match if found a transla-
tion to a specific host has already been setup for the IP-session. If no match is found this is a
new IP-session which triggers the creation of a new translation table entry. The configured
algorithm (e.g. round-robin or least-recent-used) is used to choose one of the configured
servers for the IP-address and port number. When a server is selected an translation ta-
ble entry is created for the new IP-session and the packets belonging to this IP-session is
directed to this host as long the translation entry exists.

3.3 A detailed description of NAT
In this subsection we use the term “NAT” with its originally meaning and not with the
meaning of NAT/NAPT.

The central element in a NAT device is the translation table. Each entry (row) in the
table maps to one translation of inside and outside IP addresses. When an IP packet arrives
to the NAT interface, a table lookup is performed to find a match for the TCP or UDP
session the packet belongs to. The session is defined by the value of 4 parameters: IP source
address, IP source protocol and port number, IP destination address and IP destination
protocol and port number, where protocol is either TCP or (in many cases) UDP, but not all
of these parameters are used in the lookup for every type of NAT. NAT most often uses only
the inside and outside addresses. If a match is found, the packet is translated according to
the matched entry, and the packet is forwarded to the other NAT interface. This is the same
procedure for static as for dynamic NAT. The difference between these two NAT types is
how a table entry is created and removed.

Figure 3.2: Schematic NAT overview. H1 and H2 are IP hosts located at the outside network, H3
and H4 are IP hosts located at the inside network. The NAT device translates IP addresses from the
outside NAT interface (8.0.0.1 and 8.0.0.2) network into IP-addresses present at the inside network.
The translation table has been pre-configured with 2 static NAT entries, which is seen in table.

In the following we will show a number of examples of what happens to packets when
being translated by a static NAT device. We use the schematic layout from figure 3.2 which
depicts 2 outside hosts “H1” and “H2” and 2 inside hosts “H3” and “H4” each with their
configured IP-address shown next to the hosts. The translation table on the figure is used
as the reference for the examples in the figures 3.3, 3.4, 3.5, 3.6 and 3.7.

When an IP-packet from hosts at the outside network hits the outside interface at IP-
address 8.0.0.1 the translation table entry “static-1” is being used for the “destination IP-
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address” field of the IP packet, and when the packet hits the outside interface at IP-address
8.0.0.2 the translation table entry “static-2” is being used for the “destination IP-address”
field.

Figure 3.3 is an example of static nat, where the translation table has been configured
by the network administrator when configuring the NAT device. The figure shows two
versions of an IP packet sent from H1 to H3. The IP packet is sent from IP-address 1.1.1.1
to IP-address 8.0.0.1. When it reaches the NAT device on the outside interface a lookup is
done for the IP-address in the destination field of the IP packet against the outside column
in the translation table. This matches the entry “static-1” which has the IP-address 8.0.0.1
in the “outside” column and returns the matching inside IP-address 10.10.10.10 which is
inserted into the destination IP-address field of the IP packet before being transmitted to
the inside network by the inside NAT interface.

Figure 3.3: Shows an IP packet sent from host H1 to host H2. The two parts shows the difference in
the IP packet from entry to exit of the NAT device. The left part shows the IP packet when passing the
outside NAT interface and the right part shows the IP packet when passing the inside NAT interface
into the inside network. The gray line shows the parameter changed by the NAT translation.

Figure 3.4 depicts a packet in the return direction for the same session as figure 3.3.
When the IP packet enters the inside interface of the nat device, the source IP-address of
the IP-packet is looked up at the nat translation table against the inside column. A match is
found which returns the outside IP-address 8.0.0.1 — which is inserted into the source IP-
address field of the IP-packet, before being transmitted via the outside nat interface. This
way the host H1 never sees anything else than the 8.0.0.1 IP-address in packets sent to this
IP-address, despite they are going to H3 at IP-address 10.10.10.10.

The IP session described with the figures 3.3 and 3.4 shows that the NAT has performed
an invisible translation from an outside network address to an inside network address. Ap-
plication protocols at higher layers than TCP or UDP that contain IP-addresses of inside
hosts which are not translated by the NAT this will disturb (or break) applications which
rely on IP-addresses transmitted by protocols at higher levels to perform their tasks. The
solution to this is to bring a specific application layer gateways (ALG) into work. ALGs
is a type of advanced NAT module which knows about specific protocols that need special
treatment. ALG techniques is not a part of this project so we do not discuss this special
type of NAT any further.

Figure 3.4: The IP packet returning from host H3 back to host H1. The left part shows the IP packet
when exiting the outside NAT interface and the right part shows the IP packet when entering the
inside NAT interface. The gray line shows the parameter changed by the NAT translation.

Figure 3.5 is the same scenario as the previous example, but this time another outside
host H2 is sending an IP-packet to host H3. The destination IP-address of the IP packet is
compared with the outside column in the translation table, and the entry “static-1” is again
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matched. The IP-address 10.10.10.10 is inserted in the destination field of the IP packet
before being send out of the inside nat interface.

Figure 3.5: IP packet sent from host H2 to host H3. The left part shows the packet when entering
the outside NAT interface and the right part shows the packet when exiting the inside NAT interface.
The gray line shows the parameter changed by the NAT translation.

Figure 3.6 shows the IP packet returning from host H3 back to host H2. When entering
the inside nat interface the IP-address in the source IP-address field is looked up at the
inside column of the translation table and the IP-address 8.0.0.1 is returned and inserted
into the source IP-address of the IP packet before being transmitted out of the outside nat
interface.

The packets each contains all other data but the translation table entry for the inside
host to be translated correctly - no saving of the outside host IP-address and port number is
needed. This means that all sessions to the same outside NAT address are using (sharing)
the same static translation table entry.

Figure 3.6: The IP packet returns from host H3 back to host H2. The left part shows the IP packet
when exiting the outside NAT interface and the right part shows the IP packet when entering the
inside NAT interface. The gray line shows the parameter changed by the NAT translation.

Figure 3.7 shows an IP packet sent from host H2 to host H4. This matches the “static-2”
entry where the 8.0.0.2 IP-address is found in the outside column of the translation table.
This returns the IP-address 11.11.11.11 which is inserted into the destination field of the IP
packet before being transmitted out of the inside nat interface.

Figure 3.7: IP packet sent from host H2 to host H4. The left part shows the IP packet when enter-
ing the outside NAT interface and the right part shows the IP-packet when leaving the inside NAT
interface. The gray line shows the parameter changed by the NAT translation.

We have now seen how NAT is able to hide the IP-addresses of hosts on internal net-
works. The examples here are all with static NAT, which typically is used when outside
hosts (like H1 and H2) are going to access services on internal hosts (like H3 and H4).

Translation initiated from the inside to the outside NAT interface is treated a bit different
as it is possible to automatically create translation table entries as traffics originate from
the inside IP-subnets going toward IP-addresses located at the outside interface of the NAT.
Traffic this way only needs an unallocated IP-address from the IP-range (or IP-address
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pool) of the outside NAT interface to pass. This allocation can be done automatically by the
dynamic NAT function. The number of needed IP-addresses at the outside NAT interface
is the number of simultaneous active inside hosts. One IP-address per simultaneous active
inside host is needed at the outside NAT IP-address pool.

3.4 A detailed description of NAPT
Network Address and Port Translation (NAPT) is NAT with added port translation. Besides
the IP-address NAPT also translates port numbers. NAPT is often used when a number of
hosts on the inside NAPT interface is being translated to a single shared IP address (and
assigned unique port numbers per session) at the outside NAPT interface. The problem that
port translation solves is if two inside hosts have to share the same outside NAT interface
IP-address, both are using the same source TCP port number — then the NAT needs to
solve this conflict by translating one of the two conflicting IP-sessions (TCP) port numbers
at the outside NAT interface IP-address to a unallocated (TCP) port number. When NAT is
translating port numbers - it is formally called “Network Address and Port Translation” or
short “NAPT”.

The translation table shown in figure 3.8 contains data for the translations in the exam-
ples below. The format of each field of the table is IP-address:port-number. E.g. 8.0.0.1:80
means IP-address 8.0.0.1 port 80. The examples only shows TCP protocols and we do not
differentiate between TCP and UDP in the examples — in the real world they are separate
port ranges TCP and UDP are not sharing the same port number range.

The NAPT device shown in figure 3.8 has only one outside nat interface IP-address
configured: 8.0.0.1, which is being used for all translations. The “static-1” entry has been
configured by the administrator of the NAPT device to translate all incoming IP-packets at
the outside NAPT interface matching IP-address 8.0.0.1 port number 80 to the inside IP-
address 11.11.11.11 port number 8000. The 2 dynamic entries are created by the packets
shown in the examples below.

Figure 3.8: NAPT schematic overview. H1 and H2 are IP hosts located at the outside network.
H3 and H4 are hosts located at the inside network. The NAPT device translates IP addresses from
the inside network into IP addresses at the outside-local IP address (8.0.0.1) by the “dynamic” rules
which are created when needed. Translation of traffic from outside hosts (H1 or H2) that originates at
the outside NAT interface (8.0.0.1) will be translated by the “static-3” translation rule if its destination
address matches port 80. The “static-3” translation rule has been pre-configured.

With the figures 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14 we show detailed examples of
NAPT translations. The gray shaded boxes in each figure shows the fields that are changed
by the translation.



24 CHAPTER 3. A MODEL OF NETWORK ADDRESS TRANSLATION (NAT)

Figure 3.9 depicts an example of an IP packet that is sent from the inside host H3 to
the outside host H1. When the IP packet reaches the inside NAPT interface a search at
the translation table for the content of the source IP-address and the source port number of
the IP-packet is performed against the “inside-local” column of the translation table. No
match is found. As the NAPT device is configured as a dynamic NAPT device for packets
traveling from the inside interface towards the outside interface — generation of a new
translation table entry is triggered. The NAPT device chooses the 10.10.10.10:40000 to
8.0.0.1:40000 translation rule if it is available and inserts it into the translation table. In
the example this is inserted as the “dynamic-1” row of the translation table together with
the insertion of the destination IP-address and port number of the IP-packet data into the
“outside-source” field of the translation table — to be able to identify which session the
translation table entry belongs to when IP packets returns from the outside host H1. As the
port numbers are the same between the inside and outside interfaces, no port numbers are
(visibly) being translated and besides the automatic creation of the translation table entry
everything works as in the static nat example above.

Figure 3.9: IP packet sent from host H3 to host H1. The left part is the IP-packet when it leaves the
outside NAPT interface after translation and the right part is the IP packet when is enters the inside
NAPT interface. The gray marked areas shows the parameters changed by the NAPT translation.

Figure 3.10 shows a return IP packet for the same session as figure 3.9. The IP-session-
id signature2 of the IP packet is looked up against the “outside-local” and the “outside-
source” columns of the translation table and a match with the “dynamic-1” entry is found.
The value 10.10.10.10:40000 is returned from the translation table and inserted into the
destination IP-address and destination port fields of the IP packet before it is transmitted
out via the inside NAPT interface.

Figure 3.10: IP packet returns from host H1 back to host H3. The left part shows the IP packet when
entering the outside NAPT interface and the right part shows the IP packet when leaving the inside
NAPT interface after being translated by the NAPT translation entry “dynamic-1” in figure 3.8. The
gray marked areas shows the parameters changed by the NAPT translation.

Figure 3.11 shows an IP packet from the inside host H4 being sent to the outside host
H1. When the IP packet reaches the inside NAPT interface the source IP-address and
source port number is looked up at the inside column of the translation table. No match
is found. As dynamic NAPT is configured for this direction trough the NAPT the creation
of a new translation table entry is triggered. This time the 8.0.0.1:40000 outside address is
occupied by the session established in figure 3.9 and figure 3.10 (assuming the session is
still existing). An available outside IP-address and port number pair has to be found. Here
8.0.0.1:40001 is selected and inserted into the translation table as the “dynamic-2” entry
with the destination IP-address and port number of the IP-packet to identify return packets

2See the definition of the IP-session-id in section 3.1 page 17.
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belonging to the same IP-session (outside-source: 1.1.1.1:80, outside-local: 8.0.0.1:40001,
inside-local: 11.11.11.11:40000). The content of the source IP-address and source port
number and protocol of the IP packet is exchanged with these values before being trans-
mitted out of the outside NAPT interface towards host H1.

Figure 3.11: IP packet originating from host H4 sent to host H1. The left part shows the IP packet
when leaving the outside NAPT interface after translation and the right part shows the IP packet
when entering the inside NAPT interface. The gray areas shows the parameters changed by the
NAPT translation.

Figure 3.12 shows a return packet from the same session as in figure 3.11 above. When
the IP packet reaches the outside NAPT interface its IP-session-id (source: 1.1.1.1:80, des-
tination: 8.0.0.1:40001) is looked up in the outside-source and outside-local column of the
translation table and a match is found at the “dynamic-2” entry. The IP-address 11.11.11.11
port number 40000 is returned and inserted at the destination IP-address and port number
fields of the IP packet, before being transmitted out of the inside NAPT interface towards
host H4.

Figure 3.12: IP packet returning from host H1 back to host H4. The left part shows the IP packet
when entering the outside NAPT interface and the right part shows the IP packet when leaving the
inside NAPT interface. The gray areas shows the parts of the packet that has been changed by the
NAPT translation.

We have now seen how NAPT is able to hide a number of hosts at an internal net-
work behind a single IP-address by translation of the IP-addresses and port numbers of the
internal hosts into outside NAPT interface IP-addresses and port numbers.

In figure 3.13 we show a static NAPT translation using the “static-3” entry of figure 3.8.
This will translate IP packets arriving at the outside NAPT interface destined for 8.0.0.1:80
to the host H4 port 8000 (11.11.11.11:8000) where a service (e.g. a http server listening at
TCP port 8000) is expected to be answering. This is used when outside hosts are going to
access services on hosts located at the inside network. When the IP packet is reaching the
outside NAPT interface the IP-session-id is looked up against the translation table. As the
“static-3” entry has a wild card (or don’t care marker) in the “outside-source” column the
‘static-3” entry is found. The translation pair. 11.11.11.11:8000 is returned and inserted
into the destination field of the IP packet before being transmitted out of the inside NAPT
interface towards the host H4. As the entry is static (permanent existing) the NAT device
does not have to follow the session creation and termination hence there is no need to save
the content of the “outside-source” field as these are carried in each IP packet anyway (in
this example the 1.1.1.1:30000 pair).

It is not in all circumstances that IP packets sent to the outside interfaces are translated
by the static NAT. In the next example we show an example where this is not the case.

In figure 3.14 we see a packet sent from host H1 to the 8.0.0.1:25 IP-address and port
number of the outside NAPT interface. The IP-session-id of the IP packet is looked up
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Figure 3.13: Static translation of IP packet from host H1 to host H4. The left part shows the IP
packet when entering the outside NAPT interface and the right part shows the IP packet when leaving
the inside NAPT interface. The gray areas shows the parameters changed by the NAPT translation.

against the “outside-source” and “outside-local” column of the translation table, and no
match is found. This means that there is no translation possible for this packet and no
forwarding onto the inside NAPT interface will happen. The packet is silently dropped (or
an ICMP error packet might be sent back depending of the implementation).

Figure 3.14: IP packet from host H1 to host H3 with no matching translation table entry. The
left side shows the IP packet when entering the outside NAPT interface and the right part shows the
packet when leaving the inside NAPT interface. As the packet is not forwarded onto the inside NAPT
interface - the packet is crossed out.

3.5 A detailed description of LS-NAT
Load Sharing NAT (LS-NAT) is the third type of NAT module uses that we describe thor-
oughly in this report. LS-NAT is used as a simple way of distributing incoming traffic for
a service between a group of hosts located at the inside LS-NAT interface all serving the
exact same content. If we as an example think of a web server, then all the content that the
web service has must be available at each web server that participate in the load sharing
group for a given service. The main idea is that each TCP connection is serviced by the
same host during its lifetime - thus when 2 servers are available each only has half of the
load. Alternative (and more ideal for a web service) it would be ideal if all TCP connec-
tions from a users web session is serviced from the same internal web server during the
session lifetime. As the LS-NAT device only know about the IP packets flowing to and
from the load shared servers, it is not by any mean an optimal load sharing for sessions, but
for simpler applications e.g. photos or graphics for advertising it is really useful.

LS-NAT devices are a specialized version of a static NAPT module where the service
IP-addresses of the participating servers are defined in a load sharing group at configuration
time. When an incoming connection arrives the LS-NAT module selects one of the servers
in the load sharing group to service the current request. The selection of a server follows
an algorithm defined at configuration time. Often used load sharing algorithms are round-
robin and “least recently used” server. More advanced algorithms like e.g. least loaded
server requires some means to measure the load of the servers participating in the load
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sharing group. This is a more advanced LS-NAT setup which we define as outside the area
for this project.

Figure 3.15: Load Sharing NAT (LS-NAT) schematic overview. Host H1 and H2 are client hosts of
the published service LS-H at IP-address 8.0.0.1 port 80. Hosts H3 and H4 are member of the same
load sharing group and offers the same service. Ideally each server serve half of the load.

In the following we will describe a few examples of how a LS-NAT can work. We
emphasize that there is no standard way of operation for LS-NAT, so there is a wide area
for developers to design solutions for specific needs of each implementation e.g. in the
area of identifying sessions, what algorithms to use and how to get the relevant data for
the algorithm in real time. A naive detection algorithm for sessions is to use only the IP
number of the client hosts and not the port number of the packets when mapping packets to
inside servers. This solution has the drawback that if a larger number of users are located
behind a NAPT device then all their traffic will be assigned to the same server and no load
sharing will occur for them. We will not go any further into discussion of which parameters
to use for identifying client traffic. In all our examples here we are using both IP-address
and port number of the client connections for the identification.

Removal of “session-” entries of the LS-NAT translation table can also be done in a
number of ways this is also one of the places where the actual design is highly decided
by the implementor. An easy but naive approach is to only remove dynamic entries after
timeouts to keep the same users using the same servers for the longest time and across
multiple TCP connections. This approach can be helping e.g. web services to get a better
load sharing efficiency, by reusing the already recently used items again for the same user.
Web services uses a large number of relative short-lived TCP connections typically one for
each item at every web-page. A “user” bound to the same load-sharing host for the longest
time will utilize the servers internal caching mechanisms. For example files already cached
in the in-memory disk-cache will be utilized when the file is retrieved more times within
short intervals during a user session lifetime.

Figure 3.15 shows a schematic LS-NAT setup and an example LS-NAT translation ta-
ble. The contents of the table is used and explained in the examples below.

The schematic diagram shown in figure 3.15 shows two outside client hosts: H1 and H2
that are accessing the service offered at the load sharing outside address 8.0.0.1:80, which
we label “LS-H” (for LS-Host) in the descriptions. The LS-H is the published outside IP-
address for the service offered by the load sharing group. The load sharing group consists
of host “H3” and host “H4” located at the inside interface of the LS-NAT.

During the next pages we will provide a detailed description of the principles of LS-
NAT. We will describe 4 packets traveling through the LS-NAT and explain what happens
with them during the translation process. The translation table shown in figure 3.15 con-
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tains data from the examples described below.
Figure 3.16 shows an IP-packet originating from host “H1” toward the “LS-H” load

sharing IP-address. When the IP packet reaches the LS-NAT its destination IP-address and
port number together with the source IP-address and port number are looked up against
the LS-NAT translation table. First the dynamic entries list (in figure 3.15 it is the entries
name starting with “session-”) is searched. If no match is found, the IP packet belongs
to a unknown session which then triggers the creation of a new “session-” entry in the
translation table with the IP-session-id matching the triggering packet.

A new “session-” entry is created by first searching the configured load sharing groups
in the translation table. This search is performed by a search for the destination IP-Address
and port number against the “outside-local” field of the translation table. A Match is
found at line “lsnat-H3” and “lsnat-H4”. The algorithm (here round-robin is configured)
selects the first entry which is “lsnat-H3” which returns the IP-address and port number
10.10.10.10:8000 that replaces the destination fields of the IP packet. The algorithm (here
round-robin is configured) selects the first entry which is “lsnat-H3” which returns the IP-
address and port number 10.10.10.10:8000. These parameters replaces the content of the
destination fields of the IP packet. Hereafter the IP packet is sent to host H3 via the inside
LS-NAT interface. The new entry is inserted into the translation table labeled “session-
H1” with the content outside-source: 1.1.1.1:40000, outside-local: 8.0.0.1:80, inside-local:
10.10.10.10:8000.

The next packet with an IP-session-signature matching the packet in figure 3.16 will
match the new entry “session-H1” in the translation table and be directed to host H3 by the
LS-NAT as it is identified as belonging to the same load-sharing session.

Figure 3.16: IP packet from host H1 sent to the LS-H public service address. The left part shows the
IP packet sent from the client host H1. The right part shows the LS-NAT translated packet sent from
the LS-NAT inside interface towards host H3. The gray areas shows which parameters the LS-NAT
has changed during the translation.

Figure 3.17 shows the IP packet returning from host H3 back to host H1. When the
packet arrives at the inside interface of the LS-NAT its source IP-address and port number
is looked up at the translation table against the “inside-local” column. The “session-H1”
row has a match. The content of the field “outside-source” is returned (1.1.1.1:40000) and
inserted into the destination IP-address and destination port number fields of the IP packet
before it is sent to host H1 via the outside LS-NAT interface.

Figure 3.17: IP packet from host H1 sent back to the H1 client. The IP packet is translated to
appear from the LS-H public service IP-address. The left part shows the IP packet sent from the
LS-H interface at the LS-NAT device. The right part shows the packet returned from host H3 back to
H1 when it enters the inside interface of the LS-NAT device. The gray areas shows which parameters
the LS-NAT has changed during the translation.

Figure 3.18 shows an IP-packet from a new client host H2, that is accessing the service
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offered at the LS-H address. When the IP packet reaches the outside LS-NAT interface the
same happens as in the figure 3.16 example. The source IP-address and port number to-
gether with the destination IP-address and port number are looked up against the translation
table “session-” entries and no match is found. The LS-NAT now identifies the packet as
belonging to an unknown TCP connection and triggers the generation of a new “session-”
entry in the translation table.

Figure 3.18: IP packet from host H2 sent to the LS-H public service address and translated by the
LS-NAT device to host H4. The left part shows the IP packet sent from the client host H2 to the LS-H
address of the LS-NAT outside interface. The right part shows the LS-NAT translated packet sent
from the LS-NAT inside interface towards host H4. The gray areas shows the parameters changed by
the LS-NAT translation.

This is done in much the same way as the example shown in figure 3.16 at page 28.
The new entry is generated by looking up the destination IP-address and port number of
the IP packet against the “outside-local” column at the translation table “lsnat-” entries.
The list of hosts in the load sharing group for the LS-H service returns the IP-address
and port numbers of host H3 and H4. As the round-robin algorithm returned host H3
address and port number (10.10.10.10:8000) the last time it was called this time it returns
the IP-address and port number for host H4 (11.11.11.11:8000), which are inserted into
the destination fields of the IP packet before it is sent to host H4 via the inside LS-NAT
interface of the LS-NAT device. At the same time the new session entry is inserted into the
translation table labeled “session-H2” with the parameters: outside-source: 2.2.2.2:40000,
outside-local: 8.0.0.1:80, inside-local: 11.11.11.11:8000 to ensure that the following TCP
packets from this host and port number is sent to the same load sharing server (H4).

Figure 3.19 shows the return packet which is the reply for the packet shown in figure
3.18 at page 29. When the IP packet reaches the inside LS-NAT interface its source and
destination IP-address and port numbers are looked up in the translation table, a match is
found at the entry labeled “session-h2” the source IP-address and port number is swapped
with the values from the table entry column “outside-local” (8.0.0.1:80) which is the LS-H
value of the public service IP-address and port number.

Figure 3.19: IP packet from host H4 sent back to the H2 client. The IP packet is translated by the
LS-NAT to appear as arriving from the LS-H public service IP-address. The left part shows the IP
packet sent from the LS-H interface at the LS-NAT device back to host H2. The right part shows the
packet returned from host H4 back to H2. The gray areas shows which parameters the LS-NAT has
changed in the IP packet during translation.

Summary
We have now described the vocabulary around NAT and IP terminology and used this in the
description of the various flavors of NAT. We have described the various flavors of NAT:
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NAT which is IP address translation (only), NAPT which is IP address and port translation,
dynamic and static NAT/NAPT and finally the Load Sharing NAT (LS-NAT). All types of
NAT has been described thoroughly with a number of examples. This has given us a good
and precise understanding of how the different types and functions of NAT is working
which we can use in the evaluation of the commercial and open source derived NAT types
and as a basis for defining the requirements for a configuration language for the XORP
NAT module.



Chapter 4

Analysis of current NAT
implementations

4.1 Analyzing existing NAT implementations
In this chapter we will do a short analysis of NAT implementations from commercial and
open source implementations. We have analyzed a few commercial NAT implementations:
Cisco and Juniper and the FreeBSD open-source implementation “natd”. During the anal-
ysis we will focus on the following features of each analyzed implementation of NAT:

• Where the NAT module are located compared to the routing function and the network
interfaces of each system.

• Is the NAT module able to handle more than two NAT interfaces (e.g. an outside and
an inside interface).

• The configuration language and vocabulary used in each implementation. It will
not be a thorough analysis, but if interesting elements springs into our eyes we will
describe these.

• We will try to identify (obvious) advantages or limitations of each of the analyzed
implementations.

We are analyzing how the selected well-known implementations handle these proper-
ties, and acquiring knowledge to design our own configuration language.

4.2 The Cisco NAT implementation
The following description refer to the Cisco configuration example in figure 4.2 at page 33.
Cisco has two sided NAT and uses the terms “outside” and “inside” to name the two inter-
faces of the NAT module. Interfaces are marked in their configuration clause with either
inside or outside if they belong to any side of a nat function block. Named NAT pools
defines the global IP-addresses used by the NAT module. Access control lists (ACL) is used
to define which IP-packets are going to be treated by the NAT module (Cisco uses the con-
figuration term access-list to define ACLs). Only the IP packets selected by the ACL
for the nat module is translated, all other IP packets passing a NAT tagged interface are not
translated. This way Cisco has a way to define exact which packets are translated by the
NAT module. The NAT function is defined by the ip nat inside source command,
which means that any packets received at the inside (labeled) interface will have their
source IP-address translated to an address in the named pool. The overload parameter
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of the ip nat inside source configuration line enables NAPT (port translation) if
the overload parameter is not included in the line only NAT (IP-address translation) is
performed.

When packets passes an interface marked as either inside or outside and fits the
Access Control List (ACL) triggering one of the configured NAT modules in the router,
the packets are sent trough the triggered NAT device. Cisco describes their NAT module
placement in the router with these words:

Packets traveling from the inside side to the outside side of the NAT function
has the NAT function translating their source address and port-numbers after
the routing function.

Packets traveling from the outside to the inside side of the nat box will pass
the NAT function before the routing function is applied to the packet. Figure
4.1 shows the Cisco NAT location related to the interfaces (if) and IP router
module (marked with an “X”).

Figure 4.1: Cisco schematic NAT diagram. “X” is the router process, “N0” and “N1” are IP subnets,
“if” marks the possible locations of Cisco interfaces, “@” is the Internet or an outside IP network.
The circles marks the “inside” and “outside” areas for the NAT definitions. The IP-addresses and
interface names matches the Cisco configuration example shown in figure 4.2 example.

Cisco supports dynamic and static NAT. Load sharing NAT (LS-NAT) is only for more
advanced Cisco boxes specially designed with load sharing purposes in mind (Cisco calls
these Content Switches) The Cisco NAT configuration example in figure 4.2 is from the
Cisco technical document “Configuring Network Address Translation – Getting started” [39].

The example below shows a typical Cisco NAT setup, where hosts on the inside network
at interfaces ‘e0’ and ‘e1’ are accessing hosts located at the public (outside) network via the
“s0” interface. Only the first 31 IP-addresses from each network is translated by the NAT
this is limited by the ACL filters defined at the access-list configuration commands.

Translation table timeouts
Cisco has a number of commands to control the timeouts of translation table entries. For
NAT (IP-address) translation it is set with this command:

ip nat translation timeout <seconds>

Dynamic NAT translations time out after a period of non-use. When port translation is
not configured, translation entries time out after 24 hours. This time can be adjusted with
the above command or with the following variations:

ip nat translation udp-timeout <seconds>
ip nat translation dns-timeout <seconds>
ip nat translation tcp-timeout <seconds>
ip nat translation finrst-timeout <seconds>
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!--- Defines Ethernet 0 with an IP address and as a NAT inside interface.
interface ethernet 0
ip address 10.10.10.1 255.255.255.0
ip nat inside

!--- Defines Ethernet 1 with an IP address and as a NAT inside interface.
interface ethernet 1
ip address 10.10.20.1 255.255.255.0
ip nat inside

!--- Defines serial 0 with an IP address and as a NAT outside interface.
interface serial 0
ip address 172.16.10.64 255.255.255.0
ip nat outside

!--- Defines a NAT pool named ovrld with a range of a single IP
!--- address, 172.16.10.1.
ip nat pool ovrld 172.16.10.1 172.16.10.1 prefix 24

!--- Indicates that any packets received on the inside interface that
!--- are permitted by access-list 7 will have the source address
!--- translated to an address out of the NAT pool named ovrld.
!--- Translations will be overloaded which will allow multiple inside
!--- devices to be translated to the same valid IP address.
ip nat inside source list 7 pool ovrld overload

!--- Access-list 7 permits packets with source addresses ranging from
!--- 10.10.10.0 through 10.10.10.31 and 10.10.20.0 through 10.10.20.31.
access-list 7 permit 10.10.10.0 0.0.0.31
access-list 7 permit 10.10.20.0 0.0.0.31

Figure 4.2: Cisco NAT configuration example showing a complete Cisco NAT dynamic configura-
tion that allows hosts from the first 30 IP-addresses from each inside network (interfaces e0 and e1)
to be translated to the outside interface (s0). The example is from the Cisco technical document [39]

When port translation (NAPT) is configured, it is possible to acquire a finer control
over translation entry timeouts, because each entry contains more context about the traffic
using it. The Cisco defaults are: Non-DNS UDP translations time out after 5 minutes; DNS
times out in 1 minute. TCP translations time out after 24 hours, unless a RST or FIN is
seen on the stream (with the same IP-session-id), in which case it times out in 1 minute.

4.3 Juniper NAT implementation
Juniper networks IP-router operating system is called JUNOS. It has a significant differ-
ent configuration structure than Cisco. JUNOS has a tree-like structure with configuration
clauses (or statements) defined for each part of the configuration. Each location in the con-
figuration tree is named by listing the nodes when traversing the nodes of the configuration
tree from the root to the location being described. The NAT configuration statements are
located below the position services nat in the JUNOS configuration-tree.

The whole services nat configuration tree is shown in figure 4.3 at page 35. We
provide a short explanation of the most important details here. When Juniper use names as
“source” and “destination” in their NAT configuration language, they refer to the relevant
fields of the IP-packet that is being translated by the configuration. The named nodes in
the list below starts at the services offset at the configuration tree. To help reading
and understanding the structure of the language we are using the same indentation as the
language itself:

nat pool <nat-pool-name> defines named IP-address definitions that can be ref-
erenced later in the configuration. A definition can be a single IP-address, an IP-
subnet or an IP-address range. It can include a protocol and port specification part.

nat rule <rule-name> Each NAT rule consists of a set of named terms, simi-
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lar to a firewall filter and a match-direction <direction> statement that
defines the direction of IP-packets the NAT rule acts upon. Valid <direction>
arguments are: input, output and input-output.

term <term-name> clause defines the NAT properties of the named NAT term.
The term clause has the following sub clauses: from and then translated.
from The from statement specifies the match conditions that are included

and excluded in the translated set of IP-addresses and ports. The from
clause has a row of sub entries which all defines IP address and port ranges
in various ways. The applications and application-sets de-
fines IP-address and port definitions for applications or sets of applications,
destination-address and source-address clauses defines IP-
addresses or IP-subnets. All the definitions under the from clause has
the function of ACLs for IP packets that are being translated by the then
translated definition in th same NAT rule.

then translated The then translated statement specifies the ac-
tions and action modifiers to be performed by the NAT module. The then
translated clause has 3 sub clauses:
source-pool <nat-pool-name>
destination-pool <nat-pool-name>
translation-type Specifies what type of NAT is used for source or

destination traffic translation. It can have the following values:
destination static Implements address translation for desti-

nation traffic without port mapping. This translation type requires
the definition of a named destination-pool with only one IP-
address and no port defined.

source static Implement address translation for source traffic
without port translation. This translation type requires the defini-
tion of a named source-pool to be defined. The referenced
pool must contain exactly one address or prefix and no port con-
figuration. Exactly one source-address value must be included in
the from statement in the same term <term-name> statement
as the source static statement. If this element is a IP-subnet
the size must be less than or equal to the pool IP-subnet size.

source dynamic Implements address translation for source traf-
fic with port translation (NAPT). A named source-pool defini-
tion must be defined. The referenced pool must include a port or
address definition. This translation type supports translation of a
large IP address range to a smaller size pool.

JUNOS supports only NAT modules with 2 interfaces, and it seems that the imple-
mented configuration syntax has the normal NAT and NAPT feature (rich) set as described
in the rfc 2663 [31]. ACLs are configured with the from statement and has the normal set
of configuration features. JUNOS has the interesting feature that the configuration vocab-
ulary source and destination keywords refers to the IP-addresses of IP packets e.g.
source refers to the source IP-address field. JUNOS does not seem to have LS-NAT func-
tionality implemented in connection with the normal NAT functionality. We have not been
able to detect any information about timeouts of NAT translation table entries for JUNOS
in the JUNOS documentation as well as we did not find any information about the precise
location of the NAT module relative to the routing process and the interfaces.

We had access to the JUNOS release 7.5 documentation [40] when analyzing this. It
seems that the newer JUNOS release 8.2 has a few minor features added to the NAT con-
figuration language - but there is still no information about translation table entry timeouts
for various protocol types or in general.
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nat {
pool nat-pool-name {
address (address | address-range low value high value | prefix);
port (automatic | range low value high value);

}
rule rule-name {
match-direction (input | output | input-output);
term term-name {

from {
applications [ application-names ];
application-sets [ set-names ];
destination-address (address | prefix);
source-address (address | prefix);

}
then {

translated {
destination-pool nat-pool-name;
source-pool nat-pool-name;
translation-type (destination type | source type);

}
syslog;

}
}

}
rule-set rule-set-name {
[ rule rule-names ];

}
}

Figure 4.3: Juniper JUNOS NAT configuration overview. The example is from the JUNOS technical
documentation [40].

4.4 FreeBSD NAT implementation
The FreeBSD NAT implementation lives in the “natd” user land program. The IP packets
are routed from the kernel via the IP DIVERT kernel module, which routes traffic that
matches a given property (configured with the ipfw divert “rule action”) to the user land
“natd” program. After the packets are translated by the “natd” module, packets are sent
back to kernel space through the IP DIVERT interface. The IP-divert command can include
ACL expressions that will select the IP packets that is passed to the NAT module.

The FreeBSD “natd” program can only handle a smaller set of IP addresses, IP-ranges
or one IP subnet at a time. The configuration can take an interface name as the global
side interface configuration. Several static translations can be set up and more complex
configurations can be loaded from a file.

We will describe a few of the configuration details of natd in the following paragraphs.
All configuration examples are written as command line arguments to the /usr/sbin/natd
command.

The argument below provides static NAT functionality.

-redirect_address localIP publicIP

-redirect_port proto targetIP:targetPORT[-targetPORT]
[aliasIP:]aliasPORT[-aliasPORT]
[remoteIP[:remotePORT[-remotePORT]]]

According to the manual page If the -redirect port example parameter called
“targetIP”) is supplied with more comma separated IP-addresses it will become a LS-NAT
setup. “targetIP” and “targetPORT” refers to the servers that are load-shared. “remoteIP”
and “remotePORT” are the outside IP address and port of the load-shared service. In many
aspects the function performed is similar to static NAT but by adding an algorithm that
controls the distribution of new sessions to one of the configured servers the “natd” NAT is
able to function as a load sharing device too. The syntax for LS-NAT is shown below:

-redirect_port proto
targetIP:targetPORT[,targetIP:targetPORT[,...]]
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[aliasIP:]aliasPORT [remoteIP[:remotePORT]]

-redirect_address localIP[,localIP[,...]] publicIP

Dynamic NAT is setup like this with global IP address derived from the name of the
interface, all other addresses at the host are by default defined as “inside” IP-addresses. The
following option defines dynamic NAT with the global IP-address at the named interface:

-interface | -n <interface>

If the interface might change its assigned IP-address during operation (e.g. if the DHCP
server assigns a new IP-address for the interface during lifetime of the “natd” operation)
the -dynamic option must be given too:

Dynamic NAT with a configured global IP address. Only one of the options -dynamic
or -alias address can be used at the same time.

-alias_address | -a <address>

Natd supports a feature that let it try to use the same (TCP/UDP) port on both sides
of a dynamic translation. By not changing the port number during the NAT translation
protocols such as Remote Procedure Calls (RPC) has a better chance of working. This
option is enabled by setting the following option in the configuration command:

-same_ports | -n

Natd has support for interfacing with external proxy server processes running at the
host which we do not address further during this project.

The FreeBSD “natd” can only handle a small number of global address definitions. We
will have to test weather more “natd” processes can be running at the same time at the same
global interface or at the host with different global interfaces defined at the command line.

The FreeBSD “natd” NAT module has a wide range of configuration possibilities. It
supports NAT, NAPT and LS-NAT operation. Has support for two interfaces, can both
use named interfaces with their existing (dynamic) IP configuration and static assigned IP-
addresses as configuration options for the outside interface. ACLs is supported via the IP
divert kernel module where normal “ipfw” firewall configuration commands can select the
IP packets to be translated by the NAT module.

The “natd” NAT module has a smaller and compact configuration “language” and the
NAT module is located between the interface that has the “outside” NAT interface and the
hosts routing process (just as shown at the Cisco schematic model at figure 4.1 at page 32.)

4.5 Conclusion
We have now evaluated 3 different implementations of NAT, 2 commercial which only has
static and dynamic functionality, and an open source version that also supports LS-NAT.
The two commercial versions has quite the same set of supported functionality and the
FreeBSD “natd” module seems to support the same set of concurrent features and trans-
lation schemes. As the FreeBSD “natd” module only has one instance the more complex
configurations and multiple rules (or NAT instances) possible in both Cisco and Juniper
NAT configuration languages is not possible in the FreeBSD “natd” module.

Cisco uses the terms “inside” and “outside” to identify (or bind) NAT interfaces to
router interfaces , Juniper JUNOS NAT configuration uses “source” and “destination” terms
which is merely termed at the names of fields in the IP packets being translated. JUNOS
has no mention of router interfaces in their configuration language, all configuration is
about matching IP-addresses - no named interfaces is used. FreeBSD “natd” NAT module
does uses the name of the outside interfaces if it has a dynamic IP configuration (e.g DHCP
assigned IP addresses).



Chapter 5

A configuration language for
XORP NAT

Introduction
Today XORP has no configuration language support for NAT. During this chapter we will
analyze the various requirements for configuring a NAT device, search for a suitable con-
figuration model and develop an configuration language for the NAT module according to
the model.

Our goal is to design a general applicable configuration language for NAT, as this will
hopefully ease the configuration language support of new host OS native NAT modules
without having to change central parts of the configuration language.

As the FreeBSD network stack does not currently have realms implemented in its IP
stack, the following discussion of realms is somehow theoretic but as this might change
someday we will consider this possibility anyway. The host-OSes we know about today
does not support realms, so the practical implementation might be different than suggested
here.

5.1 Defining a model and a configuration language
Implementing a NAT device into XORP requires a configuration language able to describe
the desired configuration of the NAT. We are pursuing a configuration file syntax which
is able to express the various setups a NAT module can have. When we create a general
applicable configuration language we will end up with a NAT configuration syntax that
can express functionality that is not achievable by all the possible host-OS NAT modules
supported, as some of these are more limited in their feature set than others.

After having analyzed configuration details of various open source and commercial
NAT products, we evaluate the various elements and ideas found with respect to creating a
configuration language for the XORP NAT module.

The general assumption is that all possible NAT functionality can be implemented by
the Click packet-rewrite module, and a subset of all possible NAT functionality can be
implemented with the native NAT modules of FreeBSD and Linux.

From a first hand perspective it seams that various native NAT implementations (FreeBSD,
Juniper and Cisco) all have quite some differences between what is possible and the nota-
tion and vocabulary used in the configuration languages for these modules.

During the analyzing of existing NAT implementations we learned that a number of
parameters has to be specified to get the possible NAT setups that each product is able to
achieve. We have identified at least 3 types of NAT functionality: Static NAT, dynamic
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NAT and Load-Sharing NAT. Each of these has different parameters in their configuration:
Inside and outside NAT IP-address definitions, some even requires TCP or UDP ports to be
specified as a part of their setup.

The language we design must be able to specify either a fixed IP or an named interface
which has a pre-configured IP-address e.g. from a DHCP client assignment before XORP
is started.

The NAT module is usually viewed as a 2 sided module. Usually we name the 2 sides
the “inside” and the “outside” interface. For most uses NAT is only using 2 sides and as far
as we know most existing NAT modules are implemented this way.

During the initial phases of designing the configuration language, we have been evalu-
ating other ways to configure a NAT device.

When taking a helicopter view of NAT configuration we are considering the idea of
viewing the logical NAT module that we configure as a multi-sided (more than 2 interfaces)
device that can handle more then 2 IP realms, see figure 5.2. The ups and downs are how
readable and understandable the configuration of the router will be compared against how
complex the interpretation of the actual configuration will be.

In figure 5.1 below we show a multi way NAT implemented with 3 2-sided NAT mod-
ules and in figure 5.2 we see the same NAT device now implemented as one logical unit.
The difference is that we view the first model as consisting of 3 NAT devices — each with
an inside and an outside interface and the last model as consisting of one device with 3
interfaces and the XORP NAT module is responsible for generating a matching configu-
ration for each (real) NAT module so the total NAT setup functions as described by the
configuration.

The multi way NAT module in figure 5.2 is an integrated box with the same functional-
ity as the model shown in figure 5.1 that consists of 3 NAT modules each providing 2-way
NAT functionality.

Figure 5.1: 2 way NAT. 3 realms connected with 3 NAT devices.

Figure 5.2: Multi way NAT with 3 realms.

5.2 The network environment used in analyzing the model
The following 3 realms: “R1”, “R2” and “R3” are used throughout the examples. The
name of the interface where each realm is connected to is also listed. Figure 5.2 and 5.1
shows the two different views we are considering to NAT. Other conditions are listed in the
description of each example.
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Realm 1: Name: R1, IP-subnet: 192.168.0.0/24, Interface name: em1.1

Realm 2: Name: R2, IP-subnet: 172.16.0.0/18, Interface name: em2.1

Realm 3: Name: R3, IP-subnet: 10.0.0.0/8, Interface name: em3.1

Our goal is to translate the IP hosts from the two local realms R1, and R2 to be able to
reach services on the R3 realm, and to allow IP hosts at the R1 to reach servers located at
the R2 realm and vice versa.

We have the following NAT options to choose from: 1:1 static NAT translation or
dynamic NAT/NAPT translation depending on whether the IP addresses are overlapping or
not in the two realms being translated.

1:1 static NAT can be used if the IP-ranges at the two networks are not overlapping.
This might seem like a waste of IP-addresses as the hosts each have an IP-address at both
networks. For all the traffic that by nature can be translated by dynamic NAT we will prefer
this.

The R1 and R2 connectivity to the R3 realm can be solved by using a NAPT translation
where R1 and R2 are the inside NAT interface.

The R1 to R2 and R2 to R1 connectivity is a bit harder and can be split up in a number
of cases: No overlapping IP-address ranges, overlapping IP-address ranges which we will
now describe in detail.

No overlapping IP-address ranges. Realms R1 and R2 are not overlapping IP-ranges,
which enables the possibility to use plain IP routing between these instead of NAT.
This requires that the R1 IP-address range are available in the R2 realm and vice
versa. (e.g. that R1 IP range is unallocated in realm R2) If R1 and R2 belongs to the
same realm pure IP routing would be enough to solve the connectivity between them.
As we are now in two different realms we need to define the address range either by
importing1 the address space from R1 into R2 and the R2 address range into R1 if
the router has this capability or by using 1:1 static NAT between R1 and R2 with the
same IP-address range defined at each interface of the NAT module, which in this
case will work as translation of IP-addresses. This will change the realms only but
not the IP-address of packets translated.

Overlapping IP-address ranges When the R1 and R2 IP-addresses are overlapping ad-
dress ranges or one of the address ranges are not available in the other realm — then
either NAPT with an IP-address for the outside NAT interface in each direction has
to be used together with dynamic NAPT to ensure the connectivity alternatively if a
1:1 NAT is wanted, hosts at R1 will have to be translated to another IP range in the
R2 realm and vice versa. In practice this is possible, but it creates the problem that a
given server is to be contacted at an IP-address depending of what network (R1, R2
or global) the client are located at. Services like DNS would have to be configured to
provide a split-view of the DNS world for the specific servers. One view for R2 hosts
seen from R1 and another view for R1 hosts seen from R2 which quickly will clutter
the whole setup and soon would be in risk of being too complicated for practical
uses.

Functions like this would be nice to be able to express in the configuration syntax,
but with the rather primitive native NAT modules (not Click) we doubt that these can
be used to implement advanced NAT like this.

1Importing of IP-addresses from one realm to another is a technique that makes IP-addresses from one realm
visible and addressable from another realm. Importing of IP-addresses must be defined for each direction sepa-
rately.
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5.3 Can we configure a multi sided NAT
Seen in this perspective we suggest that the XORP NAT configuration language has defin-
able names for each side of the NAT module and that the configuration language can define
realm names for the “inside” and the “outside” NAT interface. This way we will be able
to map the NAT modules – despite a 2 or “multi way” NAT model is being used – into a
larger network configuration with realm names as the connecting element between possible
independent IP subnets. An example configuration language is shown in figure 5.3 at page
41.

The example in figure 5.3 at page 41 consists of 2 main parts. The nat-realm defini-
tions (figure 5.3 line 2 – 26) which defines what IP addresses are defined within each realm
and the nat-dynamic part (figure 5.3 line 28 – 59) which defines the NAT translations.
The example we created only contains dynamic NAT definitions.

The 3 realms: “R1”, “R2” and “R3” are defined as described in figure 5.3 (lines 02
– 26). Each realm definition consists of a realm-name and a number of ip-def clauses
which each defines the interface name and IP address ranges that belongs to this realm.

The nat-dynamic translation part (figure 5.3 line 28 – 59) defines 3 translation map-
pings which are named “inside-outside”, “r1-r2” and “r2-r1”. Each mapping consists of one
or more inside and outside clauses, that connects the defined realms to the dynamic-
nat interfaces. As we define dynamic NAT, one side of a dynamic NAT module has the
inside interface or the ”many” IP-addresses that are translated to the outside interface or
the ”fever” IP addresses side.

The map inside-outside statement (figure 5.3 line 29 – 40) defines a dynamic
NAT translation map from the two inside realms R1 and R2 to outside realm R3 with global
the IP-address at 10.0.0.2.

The dynamic-nat rule named “r1-r2” (figure 5.3 line 41 – 49) defines a NAT translation
map with inside interface in realm R1 and outside interface in realm R2 with the global
IP-address 172.16.0.2.

The dynamic-nat rule named “r2-r1” (figure 5.3 line 50 – 58) defines a NAT translation
map with inside interface in realm R2 and outside interface in realm R3 with the global
IP-address 192.168.0.2.

The example configuration language in figure 5.3 has several new constructs which we
will describe briefly:

nat-realm <realm-name> defines the realm name and IP-addresses and interfaces
of each realm.

ip-def <ip-def-id> defines a named node for an IP definition. The node name is
stored in the “ip-def-id” and is only used to distinguish between several ip-def
nodes in the same nat-realm node. The ip-def node contains one of the fol-
lowing sub-nodes: ip-address, ip-range or ip-net. Each ip-def node
has a label parameter that defines a label to be used in the inside or outside
clauses of the map statements.

label: <label-name> The label parameter holds the “label-name” of an ip-def
node. The “label-name” is used in the map statements to refer to what IP-addresses
a map definition connects to each interface.

ip-address: <ip-address> defines a single IP-address.

ip-range: <ip-range> defines a IP-address range. The range consists of a starting
IP-address and an ending IP-address.

ip-net: <ip-net> defines a IP-network. An IP network consists of the IP-network
address and the subnet, that defines the size of the IP-net. Only valid IP-network
addresses can be defined.
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001: protocols {
002: nat {
003: nat-realm R1 {
004: ip-def net1 {
005: description: "Production dept."
006: label: R1id
007: interface: em0.1
008: ip-net: 192.168.0.0 255.255.255.0
009: }
010: }
011: nat-realm R2 {
012: ip-def net2 {
013: description: "Sales dept."
014: label: R2id;
015: interface: em1.1
016: ip-net: {172.16.0.0 255.255.192.0 }
017: }
018: }
019: nat-realm R3 {
020: ip-def net3 {
021: description: "Company backbone"
022: label: R3id;
023: interface: em3.1
024: ip-net: {10.0.0.0 255.0.0.0 }
025: }
026: }
027:
028: nat-dynamic {
029: map inside-outside {
030: inside r1 {
031: label: R1id
032: }
033: inside r2 {
034: label: R2id
035: }
036: outside r3 {
037: label: R3id
038: ip-address: 10.0.0.2
039: }
040: }
041: map r1-r2 {
042: inside r1i {
043: label: R1id
044: }
045: outside r2o {
046: label: R2id
047: ip-address: 172.16.0.2
048: }
049: }
050: map r2-r1 {
051: inside r2i {
052: label: R2id
053: }
054: outside r2o {
055: label: R1id
056: ip-address: 192.168.0.2
057: }
058: }
059: }
060: }
061: }

Figure 5.3: Example of multi way NAT configuration.
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interface: <interface-name> specifies a name for an network interface of the
operating system to be used to bind the defined IP networks to an network interface.

nat-dynamic defines a dynamic NAT translation rule which consists of map definitions
that each has inside and outside definitions.

map <map-name> defines a NAT translation module that has one or more inside
and outside interfaces that is connected to defined IP-addresses selected from the
nat-realm definitions. Each definition consists of a realm and IP definitions ei-
ther by direct address definitions or by referring to the label from the nat-realm
statements.

inside <node-id> defines what realm (or IP definitions) that are attached to the
inside interface of the NAT module defined by the map statement that the current
node is a child node of. The “node-id” name is not used to any configuration func-
tionality, but is only used to distinguish between the various inside or outside
nodes of a map statement.

outside <node-id> defines the realm that is attached to the outside interface of
a NAT module defined by the map statement that the current node belongs to. If
ip-address is defined within a outside statement, it will be the global IP-
address of the outside interface. If the interface already has another IP-address as-
signed, the IP-address defined in this clause will be an IP-alias-address of the inter-
face. The IP-address defined must not be assigned to any other interfaces or host.

Summary
As we have seen in this example configuration language, it is hard to avoid defining what
interface is the “inside” and what is the “outside” interface of a NAT module. There must
to be a way to express what side of a NAT module will have the global IP-addresses. So
even if the “multi way NAT model” might seem more practical, we still need to express
NAT modules as two sided entities - or as n-sided entities where the global side is defined
separately, which we believe is almost the same thing.

5.4 What did we learn from the multi way NAT example
We have created and evaluated an example configuration language syntax presented with an
example in figure 5.3 at page 41 of a multi way NAT device. As we see in the dynamic-nat
translation example (figure 5.3) we can not avoid defining “inside” and “outside” interfaces
as the properties of dynamic NAT basically are that one side has the ”many” IP addresses
and the other side has the ”few” IP addresses. Even when we try to describe the 3-way NAT
(the “inside-outside map” line 29-40) we need to supply information about the “inside” and
the “outside” due to the nature of NAT.

With this argument we will stop considering other than 2-way NAT configuration sup-
port, but prepare the configuration language for more NAT translation rules and NAT mod-
ules in the same router configuration.

Despite the fact that we really like the idea of defining realms separate as in the nat-realm
clauses and using these later in the map statements, we see that beside this we still need
to specify the IP address information for the “outside” interfaces in the map clause to tell
dynamic NAT what IP address to use for this.

In this perspective, we overall believe that it will be to much configuration to type in
when we are defining realms like in the example we have seen, and that the information
needed to understand what NAT translations are defined will be spread over too many places
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in the configuration file. Therefore we will try to cut the realm part down to a minimum -
e.g. just the name and then concentrate at the NAT configuration directly.

5.5 Some details of Load Sharing NAT configuration
When analyzing LS-NAT it seems clear that we need a flexible way to be able to specify
IP-addresses together with protocol information.

Protocol information is actually containing two item types, one for the TCP and UDP
protocol specification and one for the port specification. In network configurations you
often see very detailed specifications for IP-addresses and protocol/port details. The LS-
NAT example for the FreeBSD natd shows the problem. The natd configuration line:

/sbin/natd -redirect_address tcp www1:http,www2:http,www3:http www:http

Maps the TCP http port (TCP port 80) of the 3 web servers “www1”, “www2” and
“www3” to the outside load shared IP address “www” TCP port 80. (In a real configu-
ration the symbolic addresses: “www1”, “www2” and “www3” will be exchanged with
IP-addresses). To express the LS-NAT line above in our suggested configuration language
we need to express multiple IP addresses and matching port numbers in an inside or
outside clause. The example we just saw in the example of multi way NAT in figure
5.3 at page 41 showed multiple IP-addresses but did not include port number information,
which we will need to support in the configuration language.

This means that we must find a way to express protocol and port number(s) for an IP
definition which we will discuss further in section 5.6 at page 44. We also need to support
multiple IP definitions for an inside or outside clause.

In the examples (figure 5.4 lines 100 – 128 and figure 5.5 lines 200 – 247) we show
two examples of the same configuration expressed in two syntactic different configuration
languages that we have been evaluating. During both examples “http” means port 80,
“www1” has IP-address 192.168.1.5, “www2” has IP-address 192.168.1.8, “www3” has
the IP-address 192.168.1.12 and “global-www” has the IP address 80.80.80.80.

In the example in figure 5.4 (line 100 – 128) there are 3 inside nodes, and one
outside node contained in the map statement in line 103 – 125. The node structure is
much alike the configuration structure for natd.

The opposite solution (multiple outside nodes and a single inside node) is not possible
in natd with load sharing NAT, then the NAT must be turned around.

We have a second configuration example that expresses the same LS-NAT translation
in figure 5.5 at page 45 (lines 200 – 247). Each map clause has exact one inside and
one outside clause. This requires that the underlaying XORP NAT module detects the 3
equal outside definitions as identical definitions for creating the correct configuration line
for natd. The map configuration lines (figure 5.5 lines 203 – 215) defines the translation
map statement for the“www1” web server. The lines (217 – 230) defines the map statement
for the “www2” web server and so forth.

From the two examples of LS-NAT configuration languages in figure 5.4 at page 44 and
figure 5.5 at page 45 we see that we need to keep the information together in the (most)
compressed form. Here it is shown by having only one outside clause for a NAT device
with multiple inside clauses. This way we avoid the task of re-assembling the informa-
tion to configure the NAT modules similar to natd which need one outside IP-definition
and a number of inside IP-definitions as its configuration command. To avoid having to
re-assemble this information when generating a configuration for “natd” we choose to have
the possibility to express the condensed form (as in figure 5.4) in the configuration language
and in the internal data structures of the XORP NAT module.

We also see that IP-addresses, protocol and sub-protocols (TCP/UDP ports) takes up
some lines in each definition clause. Here we have used a compressed format in the
protocol: parameters to save lines in the examples. In XORP today this will have
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100: protocols {
101: nat {
102: ls-nat {
103: map web-loadshare {
104: description "load sharing of web servers"
105: outside global {
106: realm: outside
107: ip-address:80.80.80.80
108: protocols: tcp: http
109: }
110: inside www1 {
111: realm inside-ws
112: ip-address: 192.168.1.5
113: protocols: tcp: http
114: }
115: inside www2 {
116: realm inside-ws
117: ip-address: 192.168.1.8
118: protocols: tcp: http
119: }
120: inside www3 {
121: realm inside-ws
122: ip-address: 192.168.1.12
123: protocols: tcp: http
124: }
125: }
126: }
127: }
128: }

Figure 5.4: Example 1 of LS-NAT configuration example.

to be expressed in two separate lines: one for the protocol and one for the port number. In
the next section we define the format used for the protocol: parameter in the examples.

5.6 Protocol and sub-protocol specification language
In figure 5.6 we propose a language for writing protocols and port numbers in the configu-
ration file and at the CLI interface. We are going for creating of a generic language for this,
which is why we are using the term “sub-protocol” instead of the term “port”, as the term
“port” is only valid in the TCP and UDP protocols domain. The protocols: statement
(figure 5.5 at page 45) is used to specify the protocol and sub-protocols in use for an actual
translation.

The language we are proposing is created so that more protocols and sub-protocols can
be specified at the same text-line after something else – e.g. IP addresses has been specified.
When the starting point protocols-stmt is used, the beginning keyword “protocols:”
is marking the beginning of a protocol and sub-protocol definition at the line. If only a
range of protocol and sub-protocols is being specified at a given configuration parameter
the “protocols:” keyword is not needed and the protocols-def statement can be used
as the starting point. If just a range of sub-protocols for the same protocol is to be specified
the sub-protocol-list starting point can be used.

We will give a few examples of the protocol and port definition language described in
figure 5.6. The example uses the protocols-stmt starting point:

protocols: tcp: 22,33,44-55, udp: 22,33,66-70, 88

The example above specifies this set of protocols and sub-protocols: TCP protocol port:
22, 33, 44, 45 ,46 ,47 48, 49, 50, 51, 52, 53, 54, 55 and UDP protocol port: 22, 33, 66, 67,
68, 69, 70 and 88. Protocol and sub-protocol names can be used instead of the numbers, so
the following definition has the exact same meaning (ssh is a well known service name for
port 22):

protocols: tcp: ssh,33,44-55, udp: ssh,33,66-70, 88
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200: protocols {
201: nat {
202: ls-nat {
203: map web-loadshare-1 {
204: description "loadshare for web server www1"
205: outside {
206: realm: outside
207: ip-addres:80.80.80.80
208: protocols: tcp: http
209: }
210: inside {
211: realm inside-ws
212: ip-address: 192.168.1.5
213: protocols: tcp: http
214: }
215: }
216:
217: map web-loadshare 2 {
218: description "loadshare for web server www2"
219: outside {
220: realm: outside
221: ip-addres:80.80.80.80
222: protocols: tcp: http
223: }
224:
225: inside {
226: realm inside-ws
227: ip-address: 192.168.1.8
228: protocols: tcp: http
229: }
230: }
231:
232: map web-loadshare 3 {
233: description "loadshare for web server www3"
234: outside {
235: realm: outside
236: ip-addres:80.80.80.80
237: protocols: tcp: http
238: }
239: inside {
240: realm inside-ws
241: ip-address: 192.168.1.12
242: protocols: tcp: http
243: }
244: }
245: }
246: }
247: }

Figure 5.5: Example 2 of LS-NAT configuration example.
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protocols-stmt ::= protocols: <protocols-def>
protocols-def ::= <protocol>: <sub-protocol-list> [<protocols-def>]

sub-protocol-list ::= <sub-protocol-spec> [, <sub-protocols-spc>] [, <protocols-def>]...
sub-protocol-spec ::= <<sub-protocol-no>

| <service-name>>
| <<sub-protocol-range>
| <service-name-range>>

protocol ::= <protocol-no>
| <protocol-name>

protocol-no ::= <digits>
protocol-name ::= tcp | udp | icmp | <term from table A.1 or A.2>

sub-protocol-no ::= <digits>
sub-protocol-range ::= <sub-protocol-no> - <sub-protocol-no>

service-name ::= smtp | ftp | ssh | http | <well-known-port-term >
service-name-range ::= <<service-name> | <sub-protocol-no>>

- <<service-name> | <sub-protocol-no>>

well-known-port-term ::= <well-known-services term defined by iana.org >

digits ::= <digit>...
digit ::= <0|1|2|3|4|5|6|7|8|9>

letters ::= <letter>...
letter ::= <a..z|A..Z>

Figure 5.6: Proposed protocol and port definition language.

The protocol and sub-protocol language will be used in the IP specification language
that we describe in the next section.

5.7 The IP specification language definition
The XORP configuration language currently have a defined way of specifying IP-addresses
and subnet masks at the same configuration line (the ipv4net data type). But XORP does
not have a way to define either an IP-address, an IP-subnet or an IP-range at the same
configuration line, a separate configuration line and data type for each of these has to be
used in the configuration syntax.

Quite some places in the configuration file we will be able to reduce the number of
parameters of the configuration clauses (nodes) and at the xrl interface by being able to
specify IP addresses and subnets at the same line. This can be done by using a string
variable to carry a more complex syntax for these definitions in the configuration file to the
xorp NAT module. We have defined a language to define either an IP-address, IP-subnet or
an IP-range that is described in figure 5.7 at page 47. We are using the following notations
in the definitions: DDD: means decimal number from the range 0 .. 255. SS: means 2 digit
decimal number stating the number of 1-bits in the subnet mask. The valid range is 0 ..
24. MMM: means 3 decimal digits of a subnet mask and can only be one of the numbers:
{255, 252, 248, 240, 224, 192, 128, 0} with the limitations that usually applies to subnet
masks.

The proposed syntax is shown in figure 5.7 below. We only describe IPv4 addresses and
subnet masks. IPv6 addresses and subnet masks follows the same idea. The IPv6 syntax is
described in the syntax for writing IPv6 IP addresses in figure 5.9 at page 47.

Below is an example of the proposed IP definition language from figure 5.7 The exam-
ple has 2 lines with the same semantic meaning: IP-subnet address 10.200.18.0 with subnet
mask 255.255.255.0.

10.200.18.0/24 or 10.200.18.0/255.255.255.0

Figure 5.8 below contains the language definition for the IPv4 IP specification lan-
guage.
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DDD.DDD.DDD.DDD defines a single IP address.
DDD.DDD.DDD.DDD/SS defines an IP subnet with the subnet mask of ss bits.
DDD.DDD.DDD.DDD/MMM.MMM.MMM.MMM defines an IP subnet with the subnet mask.
DDD.DDD.DDD.DDD .. DDD.DDD.DDD.DDD defines an IP address range.
(alternatively a dash can be used instead of the .. delimiter)

Figure 5.7: IPv4 address and subnet mask specification language.

IP-statement ::= <IPvX> [<IP-statement>...]
IPvX ::= <IPvX-Addr> | <IPvX-Net> | <IPvXRange>
IPvX-Addr ::= <IPv4-Addr> | <IPv6-Addr>
IPvX-Net ::= <IPv4-Net> | <IPv6-Net>
IPvX-Rangel ::= <IPv4-Range> | <IPv6-Range>
IPv4-Addr ::= <IPv4-Addr-part>.<IPv4-Addr-part>

.<IPv4-Addr-part>.<IPv4-Addr-part>
IPv4-Net ::= <IPv4-Addr> | <IPv4-Subnet>

| <IPv4-Addr> | <IPv4-Subnet-mask>
IPv4-Range ::= <IPv4-Addr> .. <IPv4-Addr>
IPv4-Addr-part ::= <decimal number in the range of 0-255>
IPv4-subnet ::= / <decimal number in the range of 0 - 24>
IPv4-Submet-mask ::= / <IPv4-Subnet-mask-part>.<IPv4-Subnet-mask-part>

.<IPv4-Subnet-mask-part>.<IPv4-Subnet-mask-part>
IPv4-Submet-mask-part ::= <decimal number in the range of 0.255>

Figure 5.8: IP address and subnet mask language syntax for IPv4 IP addresses.

Figure 5.9 below contains the language definition for IPv6 addresses. IPv6 addresses
are not used in the NAT module - but we print it here to complete the language definition.

IPv6-Addr ::= <IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>
:<IPv6-Addr-part>:<IPv6-Addr-part>

IPv6-Net ::= <IPv6-Addr> | <IPv6-Subnet>
IPv6-Range ::= <IPv6-Addr> .. <IPv6-Addr>
IPv6-Addr-part ::= <hexadecimal number in the range of 0-ff>
IPv6-subnet ::= / <decimal number in the range of 0 - 128>

Figure 5.9: IP address and subnet mask language syntax for IPv6 IP addresses.

A further reduction of the number of parameters used in the configuration language and
at the xrl interface for the XORP NAT module, can be achieved by adding the protocol
specification from section 5.6 to the same configuration line as the IP address specification
defined in figure 5.8 which would further reduce the xrl interface with the protocols:
parameter (see figure 5.4 at page 44). We only show IPv4 address examples here but the
format applies to IPv6 addresses too. The suggested extension is shown in figure 5.10
below.

The example below is an example of the language defined in figure 5.10. It defines TCP
port 80 (http) for IP-address 10.200.18.1

10.200.18.1:tcp:http

Extension of the “IP address and subnet mask language” in figure 5.8 at page 47 to
add the suggested protocol extension from section 5.6. (The line below is also part of the
definition and is included in figure 5.12 at page 48.):

IPvX-protocol-statement ::= <IPvX>:<protocols-def>

We can further extend the language syntax with named interfaces and named virtual in-
terfaces by adding the following lines to the definition in figure 5.10 at page 48. This would
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DDD.DDD.DDD.DDD:<protocols-def>
DDD.DDD.DDD.DDD/SS:<protocols-def>
DDD.DDD.DDD.DDD/MMM.MMM.MMM.MMM:<protocols-def>
DDD.DDD.DDD.DDD .. DDD.DDD.DDD.DDD:<protocols-def>

Figure 5.10: IP address, subnet mask, protocol and sub-protocol definition language.

combine the parameters for the IP-address with the interface: and vif: configura-
tion parameters. Creating one configuration parameter that can take the following types
of parameters: IP-address, IP-subnet, IP-range, IP subnet mask, protocol, sub-protocol, in-
terface and virtual interface (vif) arguments. Keywords and the syntax identifies each part
when parsing the line.

interface: <interface-name> vif: <vif-name>:[<protocol-def>]

Examples of the syntax above that defines the interface named “em0” with the virtual
interface “em0.1” and TCP protocol port 80 (http).

interface: em0 vif:em0.1:tcp:80 or interface: em0 vif:em0.1:tcp:http

This can be expressed by adding the extension shown in figure 5.11 to the IP specifica-
tion language in figure 5.8 at page 47.

The IPvX line below redefines the previous definition.

IPvX ::= <IPvX-Addr> | <IPvX-Net> | <IPvXRange> | <Named-Interface>
Interface ::= interface: <Interface-name> vif: <Vif-name>
Interface-Protocol ::= interface: <Interface-name> vif: <Vif-name>[:<protocols-def>]
Interface-name ::= <letter>[<letters>|<digits>]...
Vif-name ::= <letter>[<letters>|<digits>]...

Figure 5.11: Extension of the IP definition language in figure 5.8 and figure 5.9. The IPvX definition
here redefines the definition from figure 5.9.

The accumulated result of the design of IP address, protocol, sub-protocol, interface
and virtual interface description syntax is listed in figure 5.12. We name the new overall
starting point for “IPvX-def” which maps all the earlier definitions together. We name
the new overall starting point for “IPvX-def” which maps all the IP address definitions
together. If only protocol definitions are wanted in a configuration line, the “protocol-stmt”,
“protocols-def” or the “sub-protocol-list” entities must be used directly. This completes the
design of the specification languages for XORP NAT configuration.

IPvX-def ::= <IPvX>
| <IPvX>:<protocols-def>
| <Interface>
| <Interface-Protocol>

Figure 5.12: Complete language for definition of IP addresses, protocols and interfaces. The defini-
tions in the figures 5.6 at page 46, figure 5.8 at page 47, figure 5.9 at page 47 and figure 5.11 at page
48 are all parts of the full language definition.

A last note about the suggested languages
We have not yet implemented the proposed syntax in the project as we were quite late in the
project when we got the ideas for the above IP address and port specification languages.
But being able to use this syntax instead of the originally suggested would reduce the
configuration language with quite a number of individual configuration lines.
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Configuration freeze function
When typing in XORP commands each command will normally be propagated directly to
the running configuration. The generation of the actual command for the underlaying NAT
module (e.g. Click or natd) will then be executed each time a new configuration node is
entered or changed. We suggest having a configurable parameter named config-hold in
the nat clause that freezes the current running NAT configuration until a full configuration
is typed in. We consider implementing this feature by “blocking” the generation of new
commands to the underlaying NAT system when this parameter is set.

5.8 The full XORP NAT configuration language
This is the complete XORP NAT configuration language. The various parts are described in
section 5.9 starting at page 50. This version is the implemented version of the configuration
language. The “Final remarks” subsection starting at page 55 lists the optimized version
of the configuration that uses the newly defined “IPvX-def” language. All nodes that have
an “id” parameter after the node keyword can exist in multiple instances each which must
have unique names. This apply to the map inside outside nat native-nat and
ip-divert clauses inside the fea clause of the presented language.

protocols {
nat {

disable: {disabled:bool}
config-hold: <hold:bool> // hold-commit function for all nat and

// realm changes.

static-nat {
disable: <disabled:bool>

map <map-id:txt> {
description: <description:txt>
disable: <disabled:bool>

inside <id:txt> {
realm: <srcrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
outside <id:txt> {

realm: <destrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
}

}

dynamic-nat {
disable: <disabled:bool>

map <map-id:txt> {
description: <description:txt>
binding: <binding:txt>
inside <id:txt> {

realm: <srcrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
outside <id:txt> {

realm: <destrealm:txt>
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ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
}

}

ls-nat {
disable: <disabled:bool>

map <map-id:txt> {
description: <description:txt>
scheduler-type:<scheduler:txt>
inside <id:txt> {

realm: <srcrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
outside <id:txt> {

realm: <destrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4> - <ipto:ipv4>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}
}

}
}

fea {
status-native-nat: <ok:bool>

nat <id:txt> {
native-nat <id:txt> {

disable: <disabled:bool>
nat-command: <nat-command:txt>

}

status-ip-divert: <ok:bool>

ip-divert <id:txt> {
disable: <disabled:bool>
ip-divert-rule: <ip-divert-rule:txt>

}
}

}
}

5.9 Description of the XORP NAT configuration language

The XORP NAT module is identified with a nat node which is a sub element of the top
level (configuration tree wise) protocols node.

All definitions regarding the XORP NAT module are located under the nat clause in
the configuration language except the click and the natd interface definition which is
located under the top level fea configuration node.

The XORP configuration is structured as a tree structure. Each node or leaf in the
configuration tree has a name, the individual element of the configuration tree is addressed
either absolutely or relatively from the current node must like filenames in a UNIX file
system are. Each node in the configuration tree can contain named leaves that holds a
typed parameter, or named child nodes. If more than one child node with the same name
is needed it must have an extra “id” parameter that together with the node name uniquely
identifies a given node in the configuration tree structure.
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Nodes can contain leaves which can store values and nodes can contain other nodes.
This way we can build a configuration tree, which is how the configuration file and the
in-memory configuration tree is structured.

The nat clause
The nat clause is located under the protocols clause (which is not described further
here). The nat clause is the configuration root for the parameters used in the XORP NAT
module. It also defines the location of the rtrmgr in-memory configuration tree for the
XORP NAT module. The individual sub elements used to configuring the XORP NAT
module are described in detail in this section.

nat {
disable: <disabled:bool>
config-hold: <config-hold:bool>

static-nat {
}

dynamic-nat {
}

ls-nat {
}

}

The disable parameter
By definition all XORP nodes must have a disable: parameter, which when set to true
will disable the element and everything within it. When a configuration node is disabled
the rtrmgr act as all configurations within the node (and below) is not configured. This
means that all parameters and sub-nodes are reconfigured accordingly by the rtrmgr.

This is used to deactivate a configuration element without removing it from the con-
figuration file and the in-memory configuration tree. The disable: parameter takes a
boolean value that can be either “true” or “false”. When the disable: parameter is true
the node is disabled and when the disable: parameter is false the node is active. This
description of the disable: parameter is valid for all node clauses that has a disable
parameter. The disable: parameter syntax is shown here:

disable: <disabled:bool>

The config-hold parameter
The config-hold: parameter when set to true freezes the running configuration of
XORP NAT. This is done by not generating new configurations from the in-memory con-
figuration tree as long as the config-hold parameter is true. This allows an operator to
type in a new configuration and then commit it to the running system when ready.

config-hold: <config-hold:bool>

The static-nat clause
The static-nat clause holds all the static NAT map definitions. Only one static-nat
clause is allowed in the nat clause. More map definitions can be held within the static-nat
clause.

static-nat {
disable: <disabled:bool>

map <map-id:txt> {
...

}
....

}
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The dynamic-nat clause
The dynamic-nat clause holds all the dynamic NAT map elements. Only a single
dynamic-nat clause can be defined in the map clause but more map clauses can be
defined within the dynamic-nat clause.

dynamic-nat {
disable: <disabled:bool>

map <map-id:txt> {
...

}
...

}

The ls-nat clause
The ls-nat clause holds all the Load Sharing NAT map elements. As with the static-nat
and dynamic-nat clauses, the ls-nat clause can only be defined once with each nat
clause. Several map clauses can be defined with different “map-id” labels.

ls-nat {
disable: <disabled:bool>

map <map-id:txt> {
}
...

}
}

The map clause
The map clause defines the individual mappings of each NAT type. The map clause
matches a NAT module translation rule with inside and outside sub nodes.

The map clause has the following syntax:

map <map-id:txt> {
description: <description:txt>
disable: <disabled:bool>

scheduler-type:<scheduler:txt> /* lsnat only */
binding: <binding:txt> /* dynamic nat only */

inside <id:txt> {
...

}
outside <id:txt> {

...
}

}

The “map-id” is the node id (or the name) of the map node. This is used to identify
maps from each other – no other function or feature is assigned to the “map-id” parameter.

The scheduler-type parameter applies to the ls-nat map clause only. The pa-
rameter is used to define the load sharing algorithm for the mapping. Currently accepted
values are default, round-robin and least-recent-used. Default selects
the default algorithm for the selected NAT module.

The binding parameter only applies to dynamic map clauses. Binding is used to let
the dynamic translation rule prioritize selecting the same (TCP/UDP) ports on both sides of
the NAT when creating new dynamic translation entries. This gives protocols such as RPC
better chances of surviving the NAT translation. Currently we have only found this option
at the FreeBSD natd module. For more information see the description of the FreeBSD
natd module option “-same ports” at page 36.

Valid options are: default normal operation and staticwhich sets the “-same ports”
option.
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The inside and outside clause

The inside and outside clause has the same set of child parameters and therefore we
describes these together.

The inside clause describes the IP addresses connected to the inside interface of the
NAT module, and the outside clause describes the IP addresses connected to the outside
interface of the NAT module.

As we are not very happy with this way of specifying the IP definition for a NAT inter-
face we have been working at a more simple interface which will exchange the ip-address,
ip-range and ipnet parameters with one common parameter with a well defined syn-
tax. Se the description of the IP specification languages in section 5.7 at page 46 and the
description of the protocol specification language in section 5.6 at page 44.

This will probably only change the number of parameters in the configuration file and
at the CLI interface, as each type is being identified internally by the XORP NAT module
and stored in variables of the relevant types.

Depending of the chosen NAT module, there might be limitations in how complex a
configuration that successfully can be converted into a working configuration for the given
NAT module can be.

The syntax described here is not intended to limit the possibilities for configuring the
NAT functionality, but errors may occur while translating the configuration to a configura-
tion for a given NAT module.

inside <id:txt> {
realm: <srcrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4range>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}

outside <id:txt> {
realm: <destrealm:txt>
ip-address: <ip:ipv4>
ip-range: <ipfrom:ipv4range>
ipnet: <ipnet:ipv4net>
interface: <interface:txt>
vif: <vif:txt>
protocols: <protocols:txt>

}

The realm: parameter

The realm: parameter is used to name the realm connected to the NAT interface being
configured. The realm name is not directly used to name real existing realms, but it is used
internally to identify which network are in the same realm. We consider to use the standard
names “inside” and “outside” as default assigned values until realms are really supported.
Default values for NAT module parameters can be defined in the template file for the nat
module. The realm name parameter is a text string.

realm: <realm:txt>

The ip-address: parameter

The ip-address: parameter is used to specify one IP version 4 IP-address for the NAT
interface being configured. The syntax used is the usual for IP-addreses e.g: 10.200.18.1

ip-address: <ip-address:ipv4>
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The ip-range: parameter
The ip-range: parameter is used to define one IP version 4 IP-range for the NAT in-
terface being configured. The syntax used is the xorp standard with 2 IP-addresses sepa-
rated with double dots e.g: 10.200.18.1 .. 10.200.18.10 which specifies the
IP-addresses from 10.200.18.1 to 20.100.28.10 both addresses given as the parameters are
included in the defined range.

ip-range: <ip-range:ipv4range>

The ipnet: parameter
The ipnet: parameter is used to define one IP version 4 IP-subnet for the NAT inter-
face. The syntax used is the standard xorp syntax: 10.200.18.0/24 or 10.200.18.0
255.255.255.0

ipnet: <ipnet:ipv4net>

The interface parameter
The interface: is a text string that identify an interface by name. This is equivalent to
the XORP interface type.

The Interface and virtual interface (vif) - 2 level of nodes configuration model is manda-
tory to use when defining interfaces in the XORP environment. The interface: param-
eter takes a text string argument with the name of an existing interface at the hosting-OS
e.g: em0

interface: <interface:txt>

The vif parameter
Vif means virtual interface. The vif: parameter is a string parameter which is used to
name an virtual interface. Vif interfaces are sub interfaces of a XORP interface declared
by the interface: parameter. The vif: parameter must match existing named vif
interfaces defined in the hosting-OS system e.g.: em0.1 which is the way binding of the
host-OS interfaces to XORP interfaces is done.

vif: <vif:txt>

The protocols parameter
The protocols: parameter (inside a inside or an outside clause is used to specify
the protocols that is affected by the IP specification.

The parameter type is text and the syntax of the field input, is the syntax defined as the
“protocols-def” syntax in section 5.6 at page 44.

protocols: <protocol-def:txt>

The FEA configuration part
The following configuration elements is the FEA configuration elements that controls which
NAT module at the Host OS is performing the actual address translation. We describe each
part in detail during the next pages.

The fea clause
The fea clause is the top level configuration node for the FEA module. We have added
the following set of configuration elements to the already existing set of configuration ele-
ments.
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The status-native-nat command
The status-native-nat: command returns “true” if the native NAT subsystem is
enabled in the kernel and configured. If the command returns “false” NAT is not supported
(or configured) at the hosting OS.

The fea nat clause
The nat <id:txt> clause is the FEA control element for an active NAT element (e.g.
natd). The configuration language support simultaneous running NAT instances to support
advanced configurations.

The native-nat clause
The native-nat <id:txt> clause is the FEA control element for selecting the active
NAT element. At FreeBSD this will be “natd”. The “id” label holds the natd command
name and path (e.g. “/sbin/natd”).

The nat-command parameter
The nat-command: holds the command that is sent to the NAT device identified by the
parent node-id. It is possible to issue a direct command to the NAT subsystem, or see what
command is generated by the XORP NAT module and sent to the NAT sub system.

The status-ip-divert command
The status-ip-divert: is a check for if IP-DIVERT kernel support is enabled in
kernel of the host OS. “True” return value means that the IP-DIVERT subsystem is enabled.
A “false” return value indicates that the IP-DIVERT subsystem is not enabled.

The ip-divert clause
The ip-divert node identifies a single IP-DIVERT statement. The “id” parameter is
used only to distinguish more ip-divert nodes from each other.

The ip-divert-rule parameter
The ip-divert-rule: holds the IP-DIVERT rule of the node. The rule is inserted
“as-is” with the /sbin/ipfw command (or similar commands for non FreeBSD hosted
systems). See the FreeBSD manual pages for ipfw(8) and divert(4).

Summary
We have defined and described a XORP NAT configuration language that is capable of
expressing the desired NAT configurations. We had not yet implemented all the suggested
improvements for specifying IP addresses and protocol and port ranges that we suggested
in section 5.7 page 46 and section 5.6 page 44.

If the suggested improvements are implemented the inside and outside config-
uration clause will change from the form described above to something like the form we
present in figure 5.13 below. We have reduced the number of parameters per NAT interface
from 7 to 2. We believe that this form is fulfilling our requirements of being understandable,
easy to read and not too complicated to write.

As an example of the reduced IP and protocol specification language suggested in figure
5.12 page 48 we can reduce the inside and outside configuration nodes to only 2 parameters
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each. To show this we have rewritten the old format configuration example for the LS-NAT
setup from figure 5.4 page 44 (lines 105 – 124), to the improved configuration format. The
result is presented in figure 5.14 below. The result of this is that 20 configuration lines in
the old format now can be written in only 16 lines.

inside <id:txt> {
realm: <srcrealm:txt>
ip: <ip-and-protocol-def:txt>

}

outside <id:txt> {
realm: <destrealm:txt>
ip: <ip-and-protocol-def:txt>

}

Figure 5.13: The inside and outside clauses with the new IP address and protocol
specification language used.

inside www1 {
realm: inside-ws
ip: 192.168.1.5:tcp:http

}
inside www2 {

realm: inside-ws
ip: 192.168.1.8:tcp:http

}
inside www3 {

realm: inside-ws
ip: 192.168.1.12:tcp:http

}
outside global {

realm: outside
ip: 80.80.80.80:tcp:http

}

Figure 5.14: A configuration example of the language described in figure 5.13. The example is
expressing the same as the lines 105 – 124 in the example presented in figure 5.4 page 44.

5.10 Evaluating the XORP NAT configuration language
We have defined a configuration language for the XORP NAT module which we will evalu-
ate by showing some configurations expressed in the language. We evaluate two examples
of static NAT, one example of dynamic NAT and one example of Load Sharing NAT (LS-
NAT). Together with the examples we will print the command that is generated to configure
the FreeBSD natd module.

The most important for our evaluation is to verify that the configuration language is able
to express the constructs we have identified during our analysis of NAT implementations
and the readability of the configuration.

Static NAPT from IP address and port range
The configuration shown in figure 5.15 below sets up a static NAT translation rule that
translates to and from the inside realm located at IP-address 172.17.16.15 TCP port 2300
to 2399 to the outside realm at IP address 80.10.10.10 TCP port 3300 to 3399. This is a
translation that both translates IP addresses and port numbers. When traffic hits TCP port
2301 at the inside IP address it is translated to the outside IP address TCP port 3301 and
vice versa.

The global address 80.10.10.10 is configured at interface: em0 vif: em0 which is done
outside the nat configuration section of the XORP configuration language.
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protocols {
nat
{

static-nat {
map <map-id:txt> {

description: "The outside interface"
outside <id:txt> {

realm: outside
interface: em0
vif: em0
protocols: tcp: 3300-3399

}
inside <id:txt> {

realm: inside
ip: 172.17.16.15
protocols: tcp 2300-2399

}
}

}
}

}

Figure 5.15: Static NAT translation of outside address of interface em0 vif: em0 TCP port 3300-
3399 to inside address 172.17.16.15 TCP port 2300-2399.

The XORP configuration in figure 5.15 matches the natd configuration depicted be-
low.

natd -interface em0 -rdirect_port tcp 172.17.16.15/2300-2399 3300-3300

Static NAT telnet to local server
The second static NAT example shown in figure 5.16 below is translating a outside NAT
address: 80.10.10.10 TCP port 6666 to an inside host at IP address 172.17.16.15 TCP port
23 (telnet). The outside IP address of the host is 80.10.10.10 and is configured at interface:
em0 vif: em0 as an alias IP address at the em0 interface. This is done outside of the nat
configuration part of the XORP configuration language.

Alias IP addresses at the outside interface is always selected by default when an IP
address is defined. To use the native IP address of an interface, the interface: and
vif: parameters must be used to specify the interface.

protocols {
nat {

static-nat {
map map1 {

description: "Static nat for access to inside telnet hosts"
disable: false

outside out {
realm: outside

ip: 80.10.10.10
protocols: tcp: 6666

}
inside ins {

realm: inside
ip: 172.17.16.15
protocols: tcp: telnet

}
}

}
}

}

Figure 5.16: Static NAT translation of 80.10.10.10 port TCP 6666 to inside IP address 172.17.16.15
TCP port 23 (telnet).

The XORP configuration in figure 5.16 is generating the natd command line below.
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/sbin/natd -alias_address 80.10.10.10 -redirect_port TCP 172.17.16.15/telnet 6666

Load Sharing NAT
The XORP NAT configuration for load sharing a global IP address between 3 internal
servers is shown in figure 5.4 at page 44. The example generates the following natd
command line:

/sbin/natd tcp -redirect_address 192.168.1.5:80,192.168.1.8:80,192.168.12:80 80.80.80.80:80

Dynamic translation example
Figure 5.17 shows a dynamic NAT translation configuration which translates from the in-
side IP-network 172.17.16/24 to the outside IP-address of interface: em0 vif: em0 which
is 80.10.10.1 and allocated via DHCP when the host was booted.

The configuration described can be expressed in XORP NAT configuration language
like this:

protocols {
nat {

dynamic-nat {
map labnet-to-outside {

description: "lab network"

outside global-if {
interface: em0
vif: em0

}
inside labnet {

ip: 172.17.16.0/24
}

}
}

}
}

Figure 5.17: Dynamic NAT translation rule that translates from inside IP subnet 172.17.16.0/24 to
the outside IP address of interface: em0 vif: em0.

From the analysis of the natd module in section 4.4 at page 35 we know that the
native natdmodule can not specify inside addresses at its command line when configuring
dynamic NAT. It has only support to map all known addresses at the host to the global NAT
interface. If the address range has to be limited the IPFW divert rule must be used to select
the packets that is sent to the natd program.

We are solving this by defaulting to not configuring the inside nets at the natd com-
mand and consider to implement functionality to direct the inside IP address definitions to
the IPFW divert rule at a later version.

With these comments in mind, the XORP NAT configuration in figure 5.17 is imple-
mented with the natd command below:

natd -interface em0 -dynamic

Summary
We have evaluated the proposed configuration language and feel confident that the designed
language is able to express a wide variety of NAT configurations.

We also believe we have created a configuration language that is readable and under-
standable despite its rather complicated technical capabilities. One of the thing we would
like to comment at is that it is still necessary for an administrator to have a good under-
standing of the IP configuration of the network interfaces (which is located at another part
of the XORP configuration language) to configure or understand a working NAT setup.



Chapter 6

Implementation

Overview
In this chapter we will describe the implementation of the XORP NAT module. First we
will describe the environment the module will exist in, then we will describe the XORP
NAT module itself and do a breakdown of the module into sub functions, finally we describe
each identified sub function in detail and explain the objects related to each sub function.

6.1 The XORP NAT module environment
The module environment in XORP consist of a number of items: The XRL interface, a
common set of data types, a process environment and a process state definition. Each
XORP module is a self-contained UNIX process that is controlled from the rtrmgr process.

The flow of command and communication in XORP is shown in figure 6.1. The figure
shows that the rtrmgr receives configuration commands from the user interface xorpsh The
rtrmgr builds its own version of the configuration in the in-memory configuration tree.
When nodes in the rtrmgr internal tree are added, changed or deleted the changes are
reflected to the running system by the rtrmgr which sends xrl commands to the various
XORP modules.

Figure 6.1: Configuration flow within the XORP system. We see XRL commands are sent to
the XORP NAT module and to the fea which manage the underlaying operating system features by
sending UNIX commands to the individual devices or programs.

Figure 6.1 depicts the flow of configuration data from the XORP configuration file and
the xorpsh via the rtrmgr to the rest of the XORP system. The rtrmgr sends commands to
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the XORP NAT module and sends commands to the non XORP modules IPDIVERT, natd
and the Click modular router subsystem via the fea module.

6.2 The XORP NAT module
The XORP nat module has a number of internal functions that we will identify and describe
to give an impression of the structure of the module. From the helicopter view the XORP
NAT module is divided up into tree main functions, the first is the XRL interface part
which handles the XRL interface to the rest of the XORP system. The second part is the
configuration storage that stores the configuration data received from the rtrmgr and the
third is the part that reads the content of the storage and generates a configuration for the
nat module (Click or natd) that is currently configured. The block diagram of the XORP
NAT module is depicted in figure 6.2 and a short description of each sub function is given
in the paragraphs below.

Figure 6.2: Block view of the XORP NAT module. XRL commands is received from the rtrmgr via
the XRL interface and the configuration generator part sends XRL configuration commands to the
fea that directs them to the NAT modules at the operating system.

XRL Interface

The XORP NAT XRL interface is where all commands to the module is arriving. The XRL
interface has a function for each XRL call that implements the functionality in the module,
that it is responsible for.

The Configuration storage

The XORP NAT configuration storage consists of a number of C++ classes that stores the
configuration from the rtrmgr in a form that makes it usable for generation of nat configu-
ration commands. By this we mean that the modules is storing the supplied informations in
a structured way from which it is possible to retrieve the data in a suitable condensed form.
Examples of this is if a IP subnet definition is sent to the storage it can be retrieved again as
an IP subnet definition or if a range of neighbor sub-protocols (ports) is stored as individual
sub-protocols it can be retrieved as one unbroken range. The storage is optimized this way
to be able to provide data in a form expected (or usable) by many NAT subsystems.
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The NAT configuration generator
The NAT configuration generator reads the stored configuration information and translates
these into configuration commands for the supported NAT modules. Each NAT function is
represented by a NatMap object and the configuration generator module tries to fit as many
NatMap nodes together (e.g. static, dynamic and Load Sharing) to a valid nat configuration.
If not all the configuration nodes can be implemented by a given NAT module an error
message is emitted.

Other functions
A few other functions exists in the module - among these are: translator functions and the
startup and shutdown functions for the module. The translator functions translates between
protocol and SubProtocol numeric id to the text (name) representation of the same, and
the startup and shutdown functions manage the startup and shutdown of the module logic,
XORP logging functions and other internal xorp management functions.

6.3 The XORP NAT XRL interface
The XRL interface part of the XORP NAT module is responsible for handling of the XRL
communication to and from the module. The code for the low level part of the XRL in-
terface is generated automatically as a part of the XORP XRL system. We have to write
the implementation for each interface to make it perform the desired functions. For more
information about the low level part of the XORP XRL system see the “An Introduction to
Writing a XORP Process” document [15].

Each time the rtrmgr sends a xrl command to the XORP NAT module the module either
stores the received configuration data or execute the command related to the xrl command.

The XRL interface for the XORP NAT module has a set of XRL function calls each
with a number of parameters associated. We have to provide the implementations for these
to perform the desired module functions when receiving a call to the corresponding XRL
interface.

Figure 6.3 shows the defined XRL interface for the XORP NAT module

set_nat_disable | Overall module management
get_nat_disable |
nat_config_hold |

create_nat_static_map4 | Static NAT interface
delete_nat_static_map4 |
get_nat_static_map4 |

create_nat_dynamic_map4 | Dynamic NAT interface
delete_nat_dynamic_map4 |
get_nat_dynamic_map4 |

create_lsnat_map4 | LS-NAT interface
delete_lsnat_map4 |
get_lsnat_map4 |

Figure 6.3: XRL interface functions for the XORP NAT module.

The XRL interface consists of the functions listed in figure 6.3. The functions are
described briefly here. A more detailed description of the functions is provided in template
file for the XORP NAT module named nat.xif.

Below we have a description of all the classes that is used in the XORP NAT configu-
ration storage sub module:

set nat disable: This command takes a single boolean argument which when true disables
the nat module.
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get nat disable: Returns the status of the XORP NAT module. The module is in disabled
state when the call returns a “true” value.

nat config hold: When sent a “true” value, the XORP NAT configuration is “held” (frozen).
This means that no new nat configuration command is emitted to the NAT devices
(natd or Click) each time the configuration storage changes its content. This way a
network administrator can freeze the running configuration, change the configuration
and then release the complete new configuration when ready.

create nat static map4: This command creates a static NAT entry which is stored in the
configuration storage module. A new NAT command is generated and emitted to the
running system depending of the nat config hold state.

delete nat static map4: This command deletes a static nat configuration. The “id” pa-
rameter selects the NatMap node to be deleted. A new NAT command is generated
and emitted to the running system depending of the nat config hold state.

get nat static map4: The command returns the content of the NatMap node that matches
the submitted “id” argument.

create nat dynamic map4: Handles the creation of a dynmaic NAT translation rule. There
are also a delete nat dynamic map4 and a get nat dynamic map4 func-
tion call to the dynamic NAT interface. The 3 “dynamic” XRL functions matches
the 3 “static” functions with the one exception that there is an binding parameter
which is used to specify the dynamic “-same port” option of the natd module.

create nat lsnat map4: Handles the creation of a Load Sharing NAT translation rule.
There are also a delete nat lsnat map4 and a get nat lsnat map4 func-
tion call to the load sharing NAT interface. The 3 “load sharing” XRL functions also
matches the 3 “static” functions with the one exception that there is an scheduler
parameter which is used to specify the scheduler algorithm for the load sharing be-
tween internal hosts.

At quite a late state in the project we have envisioned that the 3 NAT interface types
(static, dynamic and LS-NAT) has a very similar structure which is also the case when
looking at the internal representation of the configuration. So in the next version we will
reduce the 3 groups of nat XRL calls to only one group that takes the NAT type as a
parameter. The reason to the 3 different interface groups is that we initially believed that
the syntactic descriptions of the 3 NAT types would differ more than they ended up doing.

Implementation of the XRL interface
The XORP NAT XRL interface code consists of the xrl function stub-code generated by
the XORP XRL system and our code that perform the actual “module relevant” functions.

The auto generated xrl interface stub-code is part of a class hierarchy the is defined by
XORP. The object hierarchy is described in the next subsection.

The xrl interface code interacts with the XORP NAT configuration storage, with the
FEA and with the XORP NAT configuration generator.

XRL interface Object hierarchy
There is not a large and complex object hierarchy in the XORP NAT module, the hierarchy
depicted in figure 6.4 is due to the interface to the XRL interface system. We are respon-
sible for the code in the 2 classes named XrlNatNode and NatNode. The remaining
classes are internal XORP classes that we are using because we communicate with various
parts of the rtrmgr. The IfmgrHintObserver class is responsible for signaling the
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NAT module when any interfaces are changed at the FEA module. The ServiceBase
is the base class for XORP services, the ServiceChangeObserverBase class is
used if synchronous service status change is signaled from the XORP services system
(e.g. when a XORP module changes its service state). The XrlStdRouter class is
the “standard” XRL transmission and reception point of an XRL connection. Finally the
XrlNatTargetBase class contains the XRL targets for the XORP NAT module as pure
virtual functions, which we implement the “real” versions of in the XrlNatNode class.

Figure 6.4: Object inheritance for the XrlNatNode class.

The XRL interface classes
The xrl interface classes consists of the following C++ classes:

XrlNatNode class: The XrlNatNode class represents the XRL interface to the XORP sys-
tem. This is the class where the auto generated code and our own code meets. The
function skeletons are automatic generated as pure virtual functions, which we pro-
vide the real implementations for.

Each XRL function call has a matching function in this class which is where our
code receive the supplied parameters (arguments of the xrl calls) and returns the
results back to the calling module via the corresponding set of parameters. XRL
parameters are either input or output direction, they can not carry information both
ways during an XRL call.

Each XrlNatNode has an associated NatNode object that maintains the XORP state
and state changes by the module.

To get an impression of the class and the cooperation with the XRL interface, we list
the member functions that exists in the XrlNatNode class in figure 6.5 below.

NatNode class: The NatNode class is responsible for the process state of the module. It
performs the state changes from one process state to another according to the XORP
process state specifications. The module is most relevant during startup and shut-
down synchronization with the rest of the XORP system. We are not describing this
class in deeper details at its function is simple understood when reading the source
code and the XORP process state transitions description.

6.4 The XORP NAT Configuration storage
The XORP NAT configuration storage consists of a number of C++ classes that each han-
dles a particular type of configuration data sent to the module. One part handles the defined
realms, another part the IP definitions, a third part handles protocols and a fourth part
handles the sub-protocols. Other classes handles NAT types (static, dynamic etc.), the IP
addresses and realms defined at each NAT interface.
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XORP NAT XRL commands (Related to NAT functions)
XrlCmdError XrlNatNode::nat_0_1_set_nat_disable(...);
XrlCmdError XrlNatNode::nat_0_1_get_nat_disable(...);
XrlCmdError XrlNatNode::nat_0_1_nat_config_hold(...);
XrlCmdError XrlNatNode::nat_0_1_create_nat_static_map4(...);
XrlCmdError XrlNatNode::nat_0_1_delete_nat_static_map4(...);
XrlCmdError XrlNatNode::nat_0_1_get_nat_static_map4(...);
XrlCmdError XrlNatNode::nat_0_1_create_nat_dynamic_map4(...);
XrlCmdError XrlNatNode::nat_0_1_delete_nat_dynamic_map4(...);
XrlCmdError XrlNatNode::nat_0_1_get_nat_dynamic_map4(...);
XrlCmdError XrlNatNode::nat_0_1_create_lsnat_map4(...);
XrlCmdError XrlNatNode::nat_0_1_delete_lsnat_map4(...);
XrlCmdError XrlNatNode::nat_0_1_get_lsnat_map4(...);

XORP module control interface (Related to the XRL subsystem).
XrlCmdError XrlNatNode::common_0_1_get_target_name(...);
XrlCmdError XrlNatNode::common_0_1_get_version(...);
XrlCmdError XrlNatNode::common_0_1_get_status(...);
XrlCmdError XrlNatNode::common_0_1_shutdown()
XrlCmdError XrlNatNode::finder_event_observer_0_1_xrl_target_death(...);
void XrlNatNode::finder_register_interest_fea_cb(...);
void XrlNatNode::finder_deregister_interest_fea_cb(...);
void XrlNatNode::fea_register_shutdown()

Figure 6.5: The C++ member functions that exists in the XRL interface implementation of the
XORP NAT module.

Implementation of the configuration storage

In the following we will take a short detailed tour through the implementation of the con-
figuration storage object hierarchy and describe the implementation from an bird view with
the necessary details needed to get a good understanding of the implementation. All oper-
ations of the configuration storage is done via the functions in the XRL interface or from
the configuration generator sub module which reads the stored content. We start with de-
scribing each object class. None of the classes used for the configuration storage module
has inheritance amongst each other.

Figure 6.6: Relations between objects in the XORP NAT configuration storage. The black squared
boxes symbolizes NULL pointers.

Configuration storage object classes

The following is a description of each object class used to implement the XORP NAT
storage module. First we will describe the general issues that are valid for all objects
following a detailed description of each object class.
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All object classes are designed with the same overall concept in mind. All classes
(except the NatNode class) is able to maintain its objects as single linked lists. Each list
has an separate defined pointer that holds the start of the linked lists. This pointer must be
supplied to all member functions that handles list operations. Methods that only change
internal variables of an object does not require the head pointer.

All classes shares a set of defined method names that has the same functionality to the
object or the list it is a part of. The following is the list of these ”well known” method
names used in the configuration storage C++ classes that we describe later:

count(): Counts the number of elements in the list that matches the supplied parameters.
Several versions of count() exists to count different parameters.

get(): returns the n-th list member matching the supplied parameters. Implementations
exists to match on various parameters.

drop(): Deletes matching nodes from the list. All objects linked from the deleted object
are properly destroyed.

insert(): Inserts the “this” object into the list pointed out by the list-header. The element
is inserted according to the rules for the actual object type, and all internal pointers
are properly adjusted.

remove(): Removes the current “this” object from the supplied list-header. The parent
object is located and pointers are adjusted to reflect the removal of the object. The
removed “this” object is destroyed.

find parent node(): This function searches the list pointed out by the supplied list-header
and return a pointer to the parent object to the invoking object. This method is often
defined as a private method of the object class.

“internal attributes”: Most internal attributes are accessible by their name without the
initial “ ” character and can be set and read, by using the proper form of the name.
E.g. if the internal variable name is: “ vif” it is read by using this form: “v = vif()”
and the variable receives a new value by this form: “vif(”new value”)”.

The object classes we are using in the XORP NAT module configuration store are de-
scribed below:

NatMap class: The NatMap class keeps track of which NatRealm objects list is mapped
to each (inside or outside) interface of a NAT module and the parameters connected
to the nat module e.g. the type of nat (static, dynamic etc.) the object represents.

NatMap objects are linked together to a list of all defined NAT functions in the con-
figuration file. The NatMap class contains the NAT type, binding (only used for
dynamic NAT) and the scheduler (only used for LS-NAT) information for the NAT
translation rule defined by the NatMap node.

NatRealm class: Combines the IP address with protocol and sub-protocol information
into one node. Each NatRealm object points to an Realm object with an IP address
definition and to a Protocol object with the protocol and sub-protocol definitions that
apply to the Realm object.

Each NatRealm object is only linking to exact one Realm object and to one linked
list of SubProtocol objects. The NatRealm objects can be linked after each other.
This is to be able to have more than one inside or outside IP-definition for a NatMap
module.

Realms class: Keeps records of defined realms and holds a pointer to the start of each
linked list of class Realm objects. Realm names are identified by a text string.
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Realm class: Keeps records of the IP address definitions for a single named realm. The
definitions is kept as a linked lists of “class Realm objects” each holding one of the
following defined objects: IP address, IP subnet, IP address range, interface name,
vif name or IP alias address.

Protocol class: The Protocol class is a linked list of nodes each representing a defined
protocol identified by its “protocol number” (e.g. TCP has protocol number 6). Each
node holds the pointer to the start of the linked list of “class SubProtocol” objects.

SubProtocol class: The SubProtocol class keeps the records of the defined sub-protocols
for a given protocol type. The linked list of SubProtocol objects is consisting of
objects with the same protocol-id.

The SubProtocol class always stores the supplied sub protocol information in the
most condensed form which means that if sub-protocol 20 and 22 is defined then
when the sub-protocol 21 is being defined the class collapse these 3 to a range con-
taining the sub-protocols 20 – 22. The opposite happens when deletion within ranges
occurs.

With this we concludes the description of the XORP NAT configuration storage.

6.5 The XORP NAT Configuration generator
The XORP NAT Configuration generator traverses the NatMap object list and maps the
NAT translations defined in each of the object. The NatMap linked object list is imple-
mented one node at a time. The first node is converted to a configuration command for the
active NAT module at the hosts IP subsystem. The following NatMap objects in the list
is adding to the configuration if the content of the nodes is possible to ”add” to the con-
figuration for the former objects implemented. If some nodes can not be implemented an
error message identifying the failed objects is issued and the administrator has to configure
a setup that is possible for the given NAT subsystem.

We did not implement this part of the XORP NAT module and we do not have further
details to document here.

6.6 Other functions
Besides the functions mentioned we had created 4 small helper functions that translates
protocol names to protocol numbers and sub protocol names to sub protocol numbers and
vice versa. The functions which names ends with “t2n” (for text to number) translates from
text string to numeric form and the 2 functions which names names ends with “n2t” (for
number to text) takes a numeric argument and translates to corresponding text string. The
functions are able to support tables with all protocol and sub-protocol names and numbers
and is expandable just by adding more table entries to existing tables or new tables to the
module. The translations is done by the help of tables that we list in appendix A at page
69. The 4 functions are named like this:

protocolt2n(): The protocolt2n function takes a string argument of a protocol name and
translates it to to the corresponding protocol number.

protocoln2t(): The protocoln2t function takes a numeric argument and translates it to the
corresponding text string version of the protocol name.

sub protocolt2n(): The sub protocolt2n function takes a protocol numeric value and a
sub protocol text string, and converts it to the corresponding sub-protocol numeric
value. We have provided tables for TCP and UDP sub protocols.
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sub protocoln2t(): The sub protocoln2t function takes a numeric protocol value and a
numeric sub protocol value and returns a string with the text of the corresponding
sub protocol name.

We have added a compile time option that enables the selection between 2 different
tables that differs only by their sizes. The large table has all the protocols [36] and ports [37]
defined by Internet Assigned Numbers Authority (IANA) at www.iana.org.

6.7 Final remarks
The XRL interface nat type (static, dynamic or LS-NAT) should be changed to one generic
set of XRL interfaces instead of the implemented solution. By doing this we can save
6 XRL functions. We learned this at a rather late time during the project and did not
implement these changes in our first version of the code.

We also did not finish implementing the NAT command generating module (for natd or
Click commands) due to lack of time.

Besides the comments above we have implemented all the described functionality and
support for the XORP logging system in the NAT module.

XORP log is the XORP system log message function that provides a framework for
global log files or syslog support from xorp even when the XORP system is build on a
modular concept. A small description of using the XORP log functionality can be found in
the “An Introduction to Writing a XORP Process” [15].
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Appendix A

Names of protocols and
sub-protocols (ports)

The XORP NAT has built-in recognition of protocol and TCP/UDP port names. By defining
the preprocessor symbol “ NAT PROTOCOL T2N LONG LISTS ”. The long version
of the tables with names of protocol and ports (services) are compiled into the module. If
the symbol is undefined the short version is used instead.

Protocol names
The short version of the protocol name table is listed in figure A.2 and the long version is
listed in figure A.1.

The long version of the supported protocol name and number table:
Decimal Keyword Protocol References
0 hopopt IPv6 Hop-by-Hop Option [RFC1883]
1 icmp Internet Control Message [RFC792]
2 igmp Internet Group Management [RFC1112]
3 ggp Gateway-to-Gateway [RFC823]
4 ip IP in IP (encapsulation) [RFC2003]
5 st Stream [RFC1190,RFC1819]
6 tcp Transmission Control [RFC793]
7 cbt CBT [Ballardie]
8 egp Exterior Gateway Protocol [RFC888,DLM1]
9 igp any private interior gateway [IANA]

(used by Cisco for their IGRP)
10 bbn-rcc-MON BBN RCC Monitoring [SGC]
11 nvp-ii Network Voice Protocol [RFC741,SC3]
12 pup PUP [PUP,XEROX]
13 argus ARGUS [RWS4]
14 emcon EMCON [BN7]
15 xnet Cross Net Debugger [IEN158,JFH2]
16 chaos Chaos [NC3]
17 udp User Datagram [RFC768,JBP]
18 mux Multiplexing [IEN90,JBP]
19 dcn-MEAS DCN Measurement Subsystems [DLM1]
20 hmp Host Monitoring [RFC869,RH6]
21 prm Packet Radio Measurement [ZSU]
22 xns-IDP XEROX NS IDP

69
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Decimal Keyword Protocol References
23 trunk-1 Trunk-1 [BWB6]
24 trunk-2 Trunk-2 [BWB6]
25 leaf-1 Leaf-1 [BWB6]
26 leaf-2 Leaf-2 [BWB6]
27 rdp Reliable Data Protocol [RFC908,RH6]
28 irtp Internet Reliable Transaction [RFC938,TXM]
29 iso-tp4 ISO Transport Protocol Class 4 [RFC905,RC77]
30 netblt Bulk Data Transfer Protocol [RFC969,DDC1]
31 mfe-nsp MFE Network Services Protocol [MFENET,BCH2]
32 merit-inp MERIT Internodal Protocol [HWB]
33 dccp Datagram Congestion Control Protocol
34 3pc Third Party Connect Protocol [SAF3]
35 idpr Inter-Domain Policy Routing Protocol [MXS1]
36 xtp XTP [GXC]
37 ddp Datagram Delivery Protocol [WXC]
38 idpr-cmtp IDPR Control Message Transport Proto [MXS1]
39 tp++ TP++ Transport Protocol [DXF]
40 il IL Transport Protocol [Presotto]
41 ipv6 Ipv6 [Deering]
42 sdrp Source Demand Routing Protocol [DXE1]
43 ipv6-route Routing Header for IPv6 [Deering]
44 ipv6-frag Fragment Header for IPv6 [Deering]
45 idrp Inter-Domain Routing Protocol [Sue Hares]
46 rsvp Reservation Protocol [Bob Braden]
47 gre General Routing Encapsulation [Tony Li]
48 mhrp Mobile Host Routing Protocol [David Johnson]
49 bna BNA [Gary Salamon]
50 esp Encap Security Payload [RFC2406]
51 ah Authentication Header [RFC2402]
52 i-nlsp Integrated Net Layer Security TUBA [GLENN]
53 swipe IP with Encryption [JI6]
54 narp NBMA Address Resolution Protocol [RFC1735]
55 mobile IP Mobility [Perkins]
56 tlsp Transport Layer Security Protocol [Oberg]

using Kryptonet key management
57 skip SKIP [Markson]
58 ipv6-icmp ICMP for IPv6 [RFC1883]
59 ipv6-nonxt No Next Header for IPv6 [RFC1883]
60 ipv6-opts Destination Options for IPv6 [RFC1883]
61 any host internal protocol [IANA]
62 cftp CFTP [CFTP,HCF2]
63 any local network [IANA]
64 sat-expak SATNET and Backroom EXPAK [SHB]
65 kryptolan Kryptolan [PXL1]
66 rvd MIT Remote Virtual Disk Protocol [MBG]
67 ippc Internet Pluribus Packet Core [SHB]
68 any distributed file system [IANA]
69 sat-mon SATNET Monitoring [SHB]
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Decimal Keyword Protocol References
70 visa VISA Protocol [GXT1]
71 ipcv Internet Packet Core Utility [SHB]
72 cpnx Computer Protocol Network Executive [DXM2]
73 cphb Computer Protocol Heart Beat [DXM2]
74 wsn Wang Span Network [VXD]
75 pvp Packet Video Protocol [SC3]
76 br-sat-mon Backroom SATNET Monitoring [SHB]
77 sun-nd SUN ND PROTOCOL-Temporary [WM3]
78 wb-mon WIDEBAND Monitoring [SHB]
79 wb-expak WIDEBAND EXPAK [SHB]
80 iso-ip ISO Internet Protocol [MTR]
81 vmtp VMTP [DRC3]
82 secure-vmtp SECURE-VMTP [DRC3]
83 vines VINES [BXH]
84 ttp TTP [JXS]
85 nsfnet-igp NSFNET-IGP [HWB]
86 dgp Dissimilar Gateway Protocol [DGP,ML109]
87 tcf TCF [GAL5]
88 eigrp EIGRP [CISCO,GXS]
89 ospfigp OSPFIGP [RFC1583,JTM4]
90 sprite-rpc Sprite RPC Protocol [SPRITE,BXW]
91 larp Locus Address Resolution Protocol [BXH]
92 mtp Multicast Transport Protocol [SXA]
93 ax25 AX.25 Frames [BK29]
94 ipip IP-within-IP Encapsulation Protocol [JI6]
95 micp Mobile Internetworking Control Pro. [JI6]
96 scc-sp Semaphore Communications Sec. Pro. [HXH]
97 etherip Ethernet-within-IP Encapsulation [RFC3378]
98 encap Encapsulation Header [RFC1241,RXB3]
99 any private encryption scheme [IANA]
100 gmtp GMTP [RXB5]
101 ifmp Ipsilon Flow Management Protocol [Hinden]
102 pnni PNNI over IP [Callon]
103 pim Protocol Independent Multicast [Farinacci]
104 aris ARIS [Feldman]
105 scps SCPS [Durst]
106 qnx QNX [Hunter]
107 a-n Active Networks [Braden]
108 ipcomp IP Payload Compression Protocol [RFC2393]
109 snp Sitara Networks Protocol [Sridhar]
110 compaq-peer Compaq Peer Protocol [Volpe]
111 ipx-in-ip IPX in IP [Lee]
112 vrrp Virtual Router Redundancy Protocol RFC3768]
113 pgm PGM Reliable Transport Protocol [Speakman]
114 any 0-hop protocol [IANA]
115 l2tp L ayer Two Tunneling Protocol [Aboba]
116 ddx D -II Data Exchange (DDX) [Worley]
117 iatp I nteractive Agent Transfer Protocol [Murphy]
118 stp Schedule Transfer Protocol [JMP]
119 srp SpectraLink Radio Protocol [Hamilton]
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Decimal Keyword Protocol References
120 uti UTI [Lothberg]
121 smp Simple Message Protocol [Ekblad]
122 sm SM [Crowcroft]
123 ptp Performance Transparency Protocol [Welzl]
124 isis over IPv4 [Przygienda]
125 fire [Partridge]
126 crtp Combat Radio Transport Protocol [Sautter]
127 crudp Combat Radio User Datagram [Sautter]
128 sscopmce [Waber]
129 iplt [Hollbach]
130 sps Secure Packet Shield [McIntosh]
131 pipe Private IP Encapsulation within IP [Petri]
132 sctp Stream Control Transmission Protocol [Stewart]
133 fc Fibre Channel [Rajagopal]
134 rsvp-e2e-ignore [RFC3175]
135 - Modility Header [RFC3775]
136 udp-lite [RFC3828]
137 mpls-in-ip [RFC4023]
138-252 Unassigned [IANA]
253 Use for experimentation and testing [RFC3692]
254 Use for experimentation and testing [RFC3692]
255 Reserved [IANA]

Figure A.1: Protocol names known in XORP NAT - long version.

Decimal Keyword Protocol name
0 ipv6 IP version 6 (IPv6) in IP
1 icmp ICMP
2 igmp Internet Group Management Protocol (IGMP)
4 ipip IP in IP
6 tcp TCP
8 egp External Gateway Protocol (EGP)
17 udp UDP
46 rsvp Resource Reservation Protocol (RSVP)
47 gre Generic routing encapsulation (GR)
50 esp IPSec Encapsulating Security Payload (ESP)
51 ah IP Security (IPSec) authentication header (AH)
89 ospf Open Shortest Path First (OSP)
103 pim Protocol Independent Multicast (PIM)
112 vrrp Virtual Router Redundancy Protocol (VRRP)

Figure A.2: Protocol names known in the XORP NAT module - short version.
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Sub protocol names and numbers
Sub protocol names and numbers understood by the XORP NAT module is listed in the
tables below. Selection of the long or short version is done with the same C++
preprocessor symbol as for the protocol names.
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Port Number Port Name
20 ftp-data
21 ftp
22 ssh
23 telnet
25 smtp
53 domain
65 tacacs-ds
67 bootps
67 dhcp
68 bootpc
69 tftp
79 finger
80 http
88 kerberos-sec
109 pop2
110 pop3
111 sunrpc
113 ident
113 auth
119 nntp
123 ntp
137 netbios-ns
138 netbios-dgm
139 netbios-ssn
143 imap
161 snmp
162 snmptrap
177 xdmcp
179 bgp
389 ldap
434 mobileip-agent
435 mobilip-mn
443 https
444 snpp
464 kpasswd
512 comsat
512 exec
513 login
513 who
514 shell
514 syslog
515 printer
517 talk
518 ntalk
525 timed
543 klogin
544 kshell
639 msdp
993 imaps
1080 socks
1483 afs
1812 radius
1813 radus-acct
2049 nfs
2401 cvspserver

Figure A.3: TCP/UDP port numbers and names known in XORP NAT - long version.



75

Port Number Port Name
20 ftp-data
21 ftp
22 ssh
23 telnet
25 smtp
53 domain
67 bootps
67 dhcp
69 tftp
80 http
109 pop2
110 pop3
123 ntp
143 imap
443 https
993 imaps

Figure A.4: TCP/UDP port names and numbers known in XORP NAT - short version.
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Glossary

LAN Local Area Network.

NAT Network Address Translation. A method to translate the source and/or destination
addresses of IP packet between hosts connected to two networks where the address
plan is not coordinated - e.g. a LAN with private IP addresses (as defined in rfc
1597) and the public internet. NAT only translate IP addresses so there must be a
one-to-one translation map between hosts on either network. See also NAPT.

NAT administrator The person who is configuring the NAT device.

XORP eXtensible Open Router Platform. A open source project that develops software
for an Internet router. The project homepage is: www.xorp.org.

Realm A realm is a separate individual IP address domain, e.g. separate realms are IP
address domains, which is not part of the same IP address plan. See also the
extended description at the end of this glossary.

NAPT Network Address and Port Translation. NAPT transkates both IP-addresses and
TCP or UDP port numbers. NAPT is most often used in dynamic NAT when many
IP adresses is translated into one IP address. when there is a conflict e.g. the same
source port is used by two inside IP addresses (hosts) the NAPT function translates
one of these into a new port number when the IP packet passes the NATP module.
Hense the outside server will see two different source ports accessing it from the
same IP address.

IPv4 (XORP) : XORP data type that can hold an IP version 4 IP address.

IPv6 (XORP) : XORP data type that can hold an IP version 6 IP address.

IPvX (XORP) : XORP data type that can holdd either an IPv4 or an IPv6 IP address.

MFC: Multicast Forwarding Cache: Another name for an entry in the multicast
forwarding engine (typically used on UNIX systems).

MFEA : Multicast Forwarding Engine Abstraction.

MLD/IGMP : Multicast Listener Discovery/Internet Group Management Protocol.

MRIB : Multicast routing Information Base.

PIM-SM : Protocol Independent Multicast–Sparse Mode.

RIB : Routing Information Base.

BGP : Boarder Gateway Protocol.

TCP : Transport Control Protocol.

UDP : Universal Datagram Protocol.

77
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TCP session : TCP session is established by sending a TCP packet with the SYN flag set.
packet, and terminated by sending or receiving a TCP packet with the FIN flag set.
Packets belonging to the same TCP session is having the same IP source address,
source port number, destination IP address and destination port number.

UDP session : UDP does not have a session state, but UDP sessions is often (in NAT
terminology) defined by packets having the same IP source address, source port
number, destination IP address, and destination port number. As UDP does not have
sessions the NAT device often has a timeout for UDP sessions by e.g. not having
received packets for the same session in a defined amount of time.

Interface : XORP physical interface of a XORP router. Normally a physical interface is a
network interface card (NIC). XORP interfaces is by definition in XORP a name for
an interface that the XORP router can identify by that name via e.g. the ifconfig
UNIX command. In XORP physical interfaces has virtual interfaces as a
sub-interface- see “XORP vif”.

Vif : (XORP Virtual Interface): XORP distinguishes between interfaces (aka network
interface cards) and virtual interfaces which is configurable interfaces for a single
e.g. IPv4 or IPv6 network. To give XORP a unified logical appearance of the
hardware interfaces is by convention divided up like this. For simpler interfaces
(e.g. Ethernet NICs with an IP subnetwork connected directly, the vif will hold the
IP definition (IP-address and subnet mask) and the XORP Interface will only be a
holder for the vif configuration node. On more advanced Ethernet configurations
such as IEEE 802.1Q (Ethernet trunk with a number of Virtual LANs inside), the
Interface holds the name of the physical NIC, and a number of vif definitions below
the Interface (node) each describe a Virtual LAN interface.

DHCP : Dynamic Host Configuration Protocol. A protocol used to request, allocate and
distribute IP configuration data (IP-addresses, subnet mask, default gateway, DNS
domain name etc.) to hosts requesting such.

MBGP : Multicast Boarder Gateway Protocol.

OSI : Open Systems Interconnect. ISO network model from the 1980 era.

ISO : International Standards Organization. http://www.iso.org.

NAT terminology definitions
The following 7 quotations is from RFC-2391 [32]. They are the key definitions of the
Network Address Translation (NAT) functionality which is the reason to print them here.

TU ports, Server ports, Client ports Quotation from RFC 2391:

“We will refer TCP/UDP ports associated with an IP address simply as
”TU ports”.
For most TCP/IP hosts, TU port range 0-1023 is used by servers
listening for incoming connections. Clients trying to initiate a
connection typically select a TU port in the range of 1024-65535.
However, this convention is not universal and not always followed. It is
possible for client nodes to initiate connections using a TU port number
in the range of 0-1023, and there are applications listening on TU port
numbers in the range of 1024-65535.
A complete list of TU port services may be found in Appendix A. The
TU ports used by servers to listen for incoming connections are called
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”Server Ports” and the TU ports used by clients to initiate a connection
to server are called ”Client Ports”.”

Session flow vs. Packet flow Quotation from RFC2391:

“Connection or session flows are different from packet flows. A session
flow indicates the direction in which the session was initiated with
reference to a network port. Packet flow is the direction in which the
packet has traversed with reference to a network port. A session flow is
uniquely identified by the direction in which the first packet of that
session traversed.
Take for example, a telnet session. The telnet session consists of packet
flows in both inbound and outbound directions. Outbound telnet packets
carry terminal keystrokes from the client and inbound telnet packets
carry screen displays from the telnet server. Performing address
translation for a telnet session would involve translation of incoming as
well as outgoing packets belonging to that session.
Packets belonging to a TCP/UDP session are uniquely identified by the
tuple of (source IP address, source TU port, target IP address, target TU
port). ICMP sessions that correlate queries and responses using query id
are uniquely identified by the tuple of (source IP address, ICMP Query
Identifier, target IP address). For lack of well-known ways to distinguish,
all other types of sessions are lumped together and distinguished by the
tuple of (source IP address, IP protocol, target IP address).”

Start of session for TCP, UDP and others Quotation from RFC2391:

“The first packet of every TCP session tries to establish a session and
contains connection startup information. The first packet of a TCP
session may be recognized by the presence of SYN bit and absence of
ACK bit in the TCP flags. All TCP packets, with the exception of the
first packet must have the ACK bit set.
The first packet of every session, be it a TCP session, UDP session,
ICMP query session or any other session, tries to establish a session.
However, there is no deterministic way of recognizing the start of a UDP
session or any other non-TCP session.
Start of session is significant with NATs, as a state describing translation
parameters for the session is established at the start of session. Packets
pertaining to the session cannot undergo translation, unless a state is
established by NAT at the start of session.”

End of session for TCP, UDP and others Quotation from RFC2391:

“The end of a TCP session is detected when FIN is acknowledged by
both halves of the session or when either half receives RST bit in TCP
flags field. Within a short period (say, a couple of seconds) after one of
the session partners sets RST bit, the session can be safely assumed to
have been terminated.
For all other types of session, there is no deterministic way of
determining the end of session unless you know the application protocol.
Many heuristic approaches are used to terminate sessions. You can make
the assumption that TCP sessions that have not been used for say, 24
hours, and non-TCP sessions that have not been used for say, 1 minute,
are terminated. Often this assumption works, but sometimes it doesn’t.
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These idle period session timeouts may vary considerably across the
board and may be made user configurable.
Another way to handle session terminations is to timestamp sessions and
keep them as long as possible and retire the longest idle session when it
becomes necessary.”

Basic Network Address Translation (Basic NAT) Quotation from RFC2391:

“Basic NAT is a method by which hosts in a private network domain are
allowed access to hosts in the external network transparently. A block of
external addresses are set aside for translating addresses of private hosts
as the private hosts originate sessions to applications in external domain.
Once an external address is bound by the NAT device to a specific
private address, that address binding remains in place for all subsequent
sessions originating from the same private host. This binding may be
terminated when there are no sessions left to use the binding.”

Network Address Port Translation (NAPT) Quotation from RFC2391:

“Network Address Port Translation(NAPT) is a method by which hosts
in a private network domain are allowed simultaneous access to hosts in
the external network transparently using a single registered address. This
is made possible by multiplexing transport layer identifiers of private
hosts into the transport identifiers of the single assigned external address.
For this reason, only the applications based on TCP and UDP protocols
are supported by NAPT. ICMP query based applications are also
supported as the ICMP header carries a query identifier that is used to
corelate responses with requests. Sessions other than TCP, UDP and
ICMP query type are simply not permitted from local nodes, serviced by
a NAPT router.”

Load share Quotation from RFC2391:

“Load sharing for the purpose of this document is defined as the spread
of session load amongst a cluster of servers which are functionally
similar or the same. In other words, each of the nodes in cluster can
support a client session equally well with no discernible difference in
functionality. Once a node is assigned to service a session, that session is
bound to that node till termination. Sessions are not allowed to swap
between nodes in the midst of session.
Load sharing may be applicable for all services, if all hosts in server
cluster carry the capability to carry out all services. Alternately, load
sharing may be limited to one or more specific services alone and not to
others.
Note, the term ”Session load” used in the context of load share is
different from the term ”system load” attributed to hosts by way of CPU,
memory and other resource usage on the system.”

About the word “Realm”
The extended description of the word “Realm”. The description is from the free
encyclopedia “Wikipedia”.

Realm For other meanings see “Realm (disambiguation)”
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A Realm is the dominions of a king (or queen), a kingdom. The Old
French reaume (modern French royaume) was the form first adopted in
English, and the modern spelling does not appear fixed until the
beginning of the 17th century. The word must be referred to a supposed
Med. Lat. regalimen, from regalis, of or belonging to a rex, (king).[1]
It is particularly used for those states whose name includes the word
Kingdom (for example, the United Kingdom), to avoid clumsy repetition
of the word in a sentence. (For example, ”The Queen’s realm, the United
Kingdom...”.)
It is frequently used to refer to territories ”under” a monarch, yet not a
physical part of his or her ”kingdom”; for example, the various
Commonwealth Realms under the British crown, in Realm of Sweden, or
to Holstein that until the Second War on Schleswig was an important part
of the Danish king’s realm stretching to the border of Hamburg, although
not a part of the Danish kingdom. Similarly, the Cook Islands, Niue, and
Tokelau are considered parts of the Realm of New Zealand, though they
are not part of New Zealand proper. Likewise, the Faroe Islands and
Greenland remain parts of the Danish Realm.

Relm (disambiguation) A Realm can mean:

• A Realm, the dominions of a king (or queen), a kingdom.

• The word realm is often used in fantasy books or movies, primarily as a
synonym for a world usually other than our own.

• In Java EE realm terms a database containing users, usergroups and their roles
(sets of permissions to access server-resources). Optionally a realm manages
user-passwords, certificates and authentication logic. Also a realm can refer to
a web domain.

• Gaming - in Blizzard Entertainment’s newer games (Diablo II. Warcraft III
and World of Warcraft), the term realm is used interchangeably with a
computer gaming server (some MMORPGs use the term Shard to describe a
gaming server).

• Realmz is a fantasy adventure.

• The Realm was the name of a BBS and underground community of computer
hackers based in Melbourne, Australia in the late 1980s. Its most notable
members were Phoenix, The Force and Electron, who were both arrested by
the Australian Federal Police in April 1990 in Australia’s first major computer
hacker bust.

• Various theories have been supposed which used realms to explain how time
moves.[citation needed]
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